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Fluid flow modelling

I Navier-Stokes equations
One of the most general models for viscous compressible flow modelling

I Saint-Venant equations
Modelling of inviscid incompressible flow, vertical component of acceleration is neglected

I Kinematic wave approximation
Continuity relation and discharge rating curve
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1D Shallow water equations

ht + (hv)x = 0,
(hv)t +

`
hv2 + 1

2
gh2
´
x

= −ghBx,
(1)

where
I h = h(x, t) ... unknown fluid depth
I v = v(x, t) ... unknown horizontal velocity
I B = B(x) ... elevation of the bottom
I g = 9.81 ... gravitational constant
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Balance laws

Conservation law

ut + [f(u, x)]x = 0, (2)

I u ... unknown function
I f(u, x) ... flux function

Balance law

ut + [f(u, x)]x = ψ(u, x), (3)

I ψ(u, x) ... source term

Quasilinear form
ut + A(u)ux = ψ(u, x). (4)
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Finite volume methods

Space and time discretization

xj = j∆x, tn = n∆t, j, n ∈ Z, n ≥ 0,
Finite volumes... 〈xj−1/2, xj+1/2〉.

Integral formulation of conservation law

x2R
x1

u(x, tn+1) dx−
x2R
x1

u(x, tn) dx+
tn+1R
tn

f(u(x2, t)) dt−
tn+1R
tn

f(u(x1, t)) dt = 0,

∀(x1, x2)× (tn, tn+1) ⊂ R× (0, T ).

(5)

We use approximations of the integral averages of the unknown functions instead of the
approximations of the unknown functions

Ūj ≈ ∆x

xj+1/2Z
xj−1/2

u(x, tn)dx. (6)
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Ūj ≈ ∆x

xj+1/2Z
xj−1/2

u(x, tn)dx. (6)

High Resolution Schemes for Open Channel Flow PANM 15, 6.6. – 11.6. 2010 6 / 23



www.KMA.zcu.cz

Finite volume methods

Balance law

I Semidiscrete method in the conservation form

d

dt
Ūj = −

1

∆x
[Fj+1/2 − Fj−1/2]+Ψj . (7)

I Semidiscrete method in the fluctuation form
I

d

dt
Ūj = −

1

∆x
[A

−
(U

±
j+1/2) + A(U

±
j ) + A

+
(U

±
j−1/2)]+Ψj , (8)

I Source terms are subtracted from the flux difference

d

dt
Ūj = −

1

∆x
[A

−
(U

±
j+1/2) + A(U

±
j ) + A

+
(U

±
j−1/2)]. (9)

It is recommended to construct a well balanced scheme
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Properties of the methods

Approximations should have the similar properties like exact solution. The properties result from
decompositions of flux functions.

I Positive semidefiniteness
h ≥ 0

I Preserving steady states
ut = 0 ([f(u, x)]x = ψ(u, x)), special steady states

I Conservativity
conservation law→ conservative scheme

I TVD - total variation diminishing

total variation of unknown functions TV (Un) =
∞P

j=−∞
|Un

j+1 − Un
j |

I Numerical diffusion
exact solution has no diffusion, higher in central schemes

I Formal order of accuracy
can be influenced by the discontinuity of solution
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Explicit methods

I easy to implement
I low cost per time step
I time step is bounded by CFL stability condition
I inefficient for solution of stationary problems
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Implicit methods

I uncoditionally stable (or stable over a wide range of time steps)
I difficult to implement
I high cost per time step
I insufficiently accurate for transient problems at large ∆t

I problems with convergence of linear solvers as ∆t increases

High Resolution Schemes for Open Channel Flow PANM 15, 6.6. – 11.6. 2010 10 / 23



www.KMA.zcu.cz

Semi-implicit upwind method - stability

Scheme in the conservative form

Un+1
j −Un

j

∆t
= −

1

∆x
[(1− θ)(Fn

j+1/2−Fn
j−1/2) + θ(Fn+1

j+1/2
−Fn+1

j−1/2
)] + (1− θ)Ψn

j + θΨn+1
j .

(10)

Stability

I θ = 0 ... explicit scheme - CFL stability condition
I θ = 1 ... implicit scheme - unconditionally stable

In the scalar case, the semi-implicit scheme (0 < θ < 1) is TVD stable under the CFL condition

CFL ≤
1

1− θ
, CFL =

∆t

∆x
max
p=1,2

|λp|. (11)
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Semi-implicit upwind method - decomposition

Upwind scheme based on approximate Riemann solver
Decomposition of discontinuities of the unknown function

∆Un
j+1/2 = Un

j+1 −Un
j =

mX
p=1

αp,n
j+1/2

rp,n
j+1/2

. (12)

Define numerical fluxes

Fn
j+1/2 =

1

2
[f(Un

j ) + f(Un
j+1)]−

1

2
|An

j+1/2|∆Un
j+1/2, (13)

where An
j+1/2

is the approximation of the Jacobian matrix and

|An
j+1/2| = Rn

j+1/2|Λ
n
j+1/2|L

n
j+1/2Rn

j+1/2. (14)

Rn
j+1/2

... matrix composed of the eigenvectors of An
j+1/2

Λn
j+1/2

... diagonal matrix of the eigenvalues of An
j+1/2

Ln
j+1/2

... flux limited matrix.
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Semi-implicit upwind method - linearization

Ln
j+1/2 = I + diag

„
ϕ(u)

„
1−min


1, |λp

j+1/2
|
∆t

∆x

ff««
, (15)

where ϕ(u) is some limiter function.
If CFL > 1 then Ln

j+1/2
= I and the scheme is first order accurate.

Linearization

It used linearization for evaluating at the time layer tn+1

f(Un+1
j ) ≈ f(Un

j ) + An
j+1/2(Un+1

j −Un
j ) (16)

ψ(Un+1
j ) ≈ ψ(Un

j ) +
∂ψ

∂u
(un

j )(Un+1
j −Un

j ) (17)
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Semi-implicit upwind method - well-balancing

It is used upwind decomposition of the numerical flux. For preserving balancing property it is
necessary decomposed source terms integral in a similar manner

Ψn
j = Ψn,−

j+1/2
+ Ψn,+

j−1/2
, (18)

where
Ψn,±

j+1/2
=

1

2
(I±A−1

j+1/2
|Aj+1/2|)Ψn

j+1/2 (19)
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Central-upwind scheme

Preserve only special steady states, where spatially derivatives of unknown functions
(reconstructions) are equal to zero... define new unknown function for water level c = h+B„

c
hv

«
t

+

 
hv

(hv)2

c−B
+ 1

2
g(c−B)2

!
x

=

„
0

−g(c−B)Bx

«
. (20)

Semidiscrete scheme

d

dt
Uj(t) = −

Fn
j+1/2

(t)− Fn
j−1/2

(t)

∆x
+ Ψj(t). (21)

Numerical fluxes

Fn
j+1/2 =

a+
j+1/2

f(U−
j+1/2

)− a−
j+1/2

f(U+
j+1/2

)

a+
j+1/2

− a−
j+1/2

+
a+

j+1/2
a−

j+1/2

a+
j+1/2

− a−
j+1/2

h
U+

j+1/2
−U−

j+1/2

i
,

(22)
where

a+
j+1/2

= max
n
λN
“
f ′(U−

j+1/2
)
”
, λN

“
f ′(U+

j+1/2
)
”
, 0
o
,

a−
j+1/2

= min
n
λ1
“
f ′(U−

j+1/2
)
”
, λ1

“
f ′(U+

j+1/2
)
”
, 0
o
.

(23)
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Central-upwind scheme - "rest at lake"

Non-balanced scheme - "standard" discretization of the source term for example

Ψ
(2)
j = −gHn

j

Bj+1 −Bj−1

2∆x
. (24)

Special steady state (hv = 0, h+B = konst.). Flux difference

−
F

(2)
j+1/2−F

(2)
j−1/2

∆x
= − 1

2∆x
g
“`
Cj+1/2 −B(xj+1/2)

´2 − `Cj−1/2 −B(xj−1/2)
´2”

=

= g
B(xj+1/2)−B(xj−1/2)

∆x
·

Cj+1/2−B(xj+1/2)+Cj−1/2−B(xj−1/2)

2
.

(25)
Steady state means ut = 0... well balancing... discretization of the source terms

Ψ
(2)
j = −g

B(xj+1/2)−B(xj−1/2)

∆x
·

“
C−

j+1/2
−B(xj+1/2)

”
+
“
C+

j−1/2
−B(xj−1/2)

”
2

. (26)
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(2)
j = −g

B(xj+1/2)−B(xj−1/2)

∆x
·

“
C−

j+1/2
−B(xj+1/2)

”
+
“
C+

j−1/2
−B(xj−1/2)

”
2

. (26)
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Central-upwind scheme - "rest at lake"

Non-balanced scheme - "standard" discretization of the source term for example

Ψ
(2)
j = −gHn

j

Bj+1 −Bj−1

2∆x
. (24)

Special steady state (hv = 0, h+B = konst.). Flux difference

−
F

(2)
j+1/2−F

(2)
j−1/2

∆x
= − 1

2∆x
g
“`
Cj+1/2 −B(xj+1/2)

´2 − `Cj−1/2 −B(xj−1/2)
´2”

=

= g
B(xj+1/2)−B(xj−1/2)

∆x
·

Cj+1/2−B(xj+1/2)+Cj−1/2−B(xj−1/2)

2
.

(25)
Steady state means ut = 0... well balancing... discretization of the source terms

Ψ
(2)
j = −g

B(xj+1/2)−B(xj−1/2)

∆x
·

“
C−

j+1/2
−B(xj+1/2)

”
+
“
C+

j−1/2
−B(xj−1/2)

”
2

. (26)
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Central-upwind scheme - reconstruction

Polynomial TVD reconstruction

U+,n
j+1/2

= Un
j+1 −

“
1−min

n
1, |λmax

j+1/2
| ∆t
∆x

o”
∆x
2

(Ux)n
j+1

U−,n
j+1/2

= Un
j +

“
1−min

n
1, |λmax

j+1/2
| ∆t
∆x

o”
∆x
2

(Ux)n
j ,

(27)

where (Ux)n
j is defined

(Ux)n
j = minmod

„
Un

j −Un
j−1

∆x
,
Un

j+1 −Un
j

∆x

«
, (28)

The minmod function is minmod (a, b) is defined as follows

minmod(a, b) =
1

2
[sgn(a) + sgn(b)] ·min (|a|, |b|) . (29)

Reconstruction at the time layer tn+1 use the same derivative as at the time layer tn
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Semi-implicit central-upwind scheme

Semi-implicit scheme

Un+1
j −Un

j

∆t
= −

1

∆x
[(1− θ)(Fn

j+1/2−Fn
j−1/2) + θ(Fn+1

j+1/2
−Fn+1

j−1/2
)] + (1− θ)Ψn

j + θΨn+1
j .

(30)
where

Fn+1
j+1/2

=
a+,n

j+1/2
f(U−,n+1

j+1/2
)− a−,n

j+1/2
f(U+,n+1

j+1/2
)

a+,n
j+1/2

− a−,n
j+1/2

+
a+,n

j+1/2
a−,n

j+1/2

a+,n
j+1/2

− a−,n
j+1/2

h
U+,n+1

j+1/2
−U−,n+1

j+1/2

i
,

(31)
Linearization of the flux function

f(Un+1
j ) ≈ f(Un

j ) +
∂f

∂u
(un

j )(Un+1
j −Un

j ) (32)
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Numerical experiment 1 - Central-upwind scheme

Numerical viscosity

h(x, 0) +B(x) =


8, x ∈ 〈0, 750〉,
2, x ∈ (750, 1500〉. , v(x, 0) = 0 (33)

q(0, t) = const. (34)
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Numerical experiment 2 - Central-upwind scheme

Preserving steady state - balanced implicit scheme

h(x, 0) +B(x) = 12, v(x, 0) = 0 (35)

q(0, t) = const. (36)
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Numerical experiment 3 - Central-upwind scheme

General steady state

h(x, 0) +B(x) =


0.9, x ∈ 〈0, 0.2〉,

0.55, x ∈ (0.2, 1〉. , v(x, 0) =


0.1 x ∈ 〈0, 0.2〉,

0 x ∈ (0.2, 1〉. (37)

q(0, t) = const. (38)
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Conclusion

I Numerical diffusion
I Efficient for steady state problems
I Discontinuities - small CFL
I Extension to two-dimensional case
I Problems with dry states
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