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Automatic Adaptivity

Standard steps:
@ Solve on the coarse mesh.
@ Calculate a local error estimate for every element.
Q Identify elements with largest errors.
© Refine those elements.
@ GoTo1.
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Sometimes it Works

Figure: Stationary diffusion of neutrons.
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Also Here It Works

Figure: Small deformations of a bookshelf bracket.
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But Not All Problems Are Elliptic

Figure: Microwave heating (Maxwell).
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Figure: Incompressible flow.
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Figure: Oscillations in a Bose-Einstein condensate.

Based on Fast Trial Refinements



e a lar;
error elsewhere

in the domain.

¢
x

Ny
P ROk

lement

Small error

—
(@)
st
=

LU

©
(&)
(@)

7
C
(@)

Z



Standard Algorithm Fails

Standard steps:
@ Solve on the coarse mesh.
@ Calculate a local error estimate for every element.
Q Identify elements with largest errors.
© Refine those elements.
© GoTo1.
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Standard Algorithm Fails

Standard steps:
@ Solve on the coarse mesh.
@ Calculate a local error estimate for every element.
Q Identify elements with largest errors.
© Refine those elements.
© GoTo1.

The error will not decrease!

Unfortunately, most a-posteriori error estimates are local:
@ Analytical error estimates.
@ Solution of local Neumann or Dirichlet problems.
@ Gradient recovery techniques.
@ Etc.

Solin Adaptivity Based on Fast Trial Refinements



Dual (Adjoint) Problem

o Linear functional (quantity of interest): L € V’

@ Continuous problem: b(u, v) = I(v)

© Discrete problem: b(up p, vhp) = I(Vh p)

© Residual: r € V/ such that r(v) = I(v) — b(up,p, v)

Q Relate the residual to the error in the quantity of interest:
Find G € V" such that G(r) = L(ep,p)

© By reflexivity: G(r) = r(¥) where ¥ € V
@ But L(enp) = r(V) = (V) — b(un,p, V) = b(u, ¥) — b(un p, V) = b(en,p, V)

© Dual problem:
Find ¥ € V such that b(ep p, V) = L(epp) forall epp € V

Disadvantage: Linearity.

P. Solin Adaptivity Based on Fast Trial Refinements



Looking for an Alternative

Requirements:
@ Has to identify sources of error.
e Has to work well for nonlinear problems.
© Has to be PDE independent.
@ Has to be fast.
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Looking for an Alternative

Requirements:
@ Has to identify sources of error.
e Has to work well for nonlinear problems.
© Has to be PDE independent.
@ Has to be fast.

Fast Trial Refinements (FTR):

Local refinement + fast global solve.
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Fast Global Solve

Jacobian-Free Newton-Krylov (JFNK) Method:

@ Discrete problem (linear or nonlinear): F(Y) = 0.

@ Newton’s method:
J(YMSY™ = —F(Y").

@ Finite difference approximation:
n
J(YMV =~ M
€

@ To be used with an iterative method such as GMRES.
@ Coarse mesh approximation is an excellent initial guess.

No matrix assembled, no matrix problem solved.
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Example |

Equation —u"’(x) = f(x) in (—m, ), zero Dirichlet BC.
Exact solution u(x) = sin(x).
Computation goal: L(u) = u(0.97).
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Example |

Reference solutions:
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Example |

Convergence graphs:
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Example Il

Equation —u"’(x) = f(x) in (0, 1), Dirichlet BC.
Exact solution u(x) = x'/3+0.01,
Computation goal: L(u) = u(0.9).

— solution
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Example Il

Convergence graphs:
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