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A posteriori error estimates

» can be extracted from the discrete solution and given
data of the problem

» u - a weak solution of the problem, vy, - its discrete
solution
usual form:

Ju —up|| < cf (up), (1)

where c Is a constant and f is a function of the
discrete solution
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Discontinuous Galerkin method

» Mmethods for stationary problems
> Galerkin orthogonality principle
> Helmholtz decomposition
> duality principle

» nonstationary problem
> Helmholtz decomposition
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Poisson’s equation - formulation

Let Q € R? (d=2 or 3) be a bounded polyhedral domain
with a boundary 9Q = 0Qp U 9Q N, 00p N O N = 0. Let us
consider the problem:

—Au = f In Q,
w = gp on 00p, (2)
Vu-n = gy on 0Qy,

where n denote the outward unit normal vector to 02,
gp € HY2(0Q2p) and gy € H-V2(00y). Let f € L?(Q).
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Poisson’s eguation - notation

>

7, h > 0: a family of partitions of €} into a finite
number of closed triangles in 2D and tetrahedra in
3D with mutually disjoint interiors

ok - the radius of the largest d-dimensional ball
Inscribed into K

hx = diam(K)

Fi, 72 and F' denote the set of all interior edges,
edges on 0f)p and edges on 99y, respectively.

FoN = FPOUFRY, Fr=FlUFPUFY
VT €00 eitherT € FP, or T € FY
hr = diam(T")

A posteriori error estimates of the discontinuous Galerkin method for linear elliptic and parabolic problems — p



Poisson’s eguation - notation

» nr.aunit normal vectorto I' € 7,

» VI € FL: KL and K£ denote elements, which share
this edge, the orientation of nr: pointed out of K&

» v I € FPN: the same orientation as the outward
normal to o2

H*(Q,7p,) = {v;v|x € H*(K) VK € Tp}, (3)
|’U|’§{s(9,7h) = Z HUH%JS(K)v (4)
KeTy,

Shp = {v;v € L*(Q),v| € PP(K)VY K € Tp,}, (5)

A posteriori error estimates of the discontinuous Galerkin method for linear elliptic and parabolic problems — p



Triangulation - assumptions

» shape regularity:

h
0,>0: B <O, VKeT, (6)
PK

» local quasi-uniformity:

4C'g > 0: hr < CHhK’

/ / 7
VK, K :0KN0K #1). "
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Poisson’s eguation - notation

» Forvc H'(Q,T;) we denote:

vt = the trace of v, On T, T' € Fj, (8)
vt =the trace of v[gr ONT, T € Fj, 9)
1
(V) = 2(@F +of), T e 7L, (10)
Wl = vlé — UP, [' € Fh, (11)
L _ DN
vp =thetrace of v|gr onT', I' € 77, (12)

(v)p = [v]p = vft, T € 7PV, (13)
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Discretization

ay (u,v) = Z /KVU-Vvdx

KeT,

_ Fezf:{f’ /F(<Vu )]~ 6(Vo - n)u)) d,
(14)

EF(v) :/va dx+ Z /Fng dS—+0 Z /F(Vv-n)gD ds,

reFy IeFP
(15)
where k € {S, N, I}, 6 = —1 Is connected with the
symetric form, 6 = 1 the nonsymetric form and 6 = 0 the
iIncomplete form of the discontinuous Galerkin method.

A posteriori error estimates of the discontinuous Galerkin method for linear elliptic and parabolic problems — p



Discretization

Jy (u,v) Z / (16)

reriP

Z /ngv dsS, (17)

rerp

Cw
max{hpzr, hyr}

for T e Fi, (18)

olr =

olp = for T'e FP, (19)

where Cyy Is a suitable constant ensuring coercivity of
Bk,O’
h [
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Discretization
BZ’U(U,U) — af(u,v) + JZ(u,v), ke{S,N,I}, (20)

I (v) = Ff(v)+ Jp(v), ke{S,N,I}. (1)

Definition 1 Function uy, Is called a discontinuous
Galerkin approximation of the solution of the problem (2),
If it is the solution of one of the following problems:

Find u;, € S, such that

By (un, o) = 1, (vh) Vv € Shy, (22)

where k € {S, N, I}
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Theorem 1 (Multiplicative trace inequality) There
exists a constant C; > 0 independent of v, h and K such
that

Le+ht %), KeT,, ve HY(K).

(23)
Theorem 2 (Inverse inequality) There exists a constant
C7 > 0 independent of v, h and K such that

vl < Cullvlklv

’U’LK < O]hl_(leHK, KeTl, ve Pp(K). (24)
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A posteriori error estimate

Definition 2 Let u be the weak solution of (2) and w,, be
Its discontinuous Galerkin approximation. Let set

e =U— Up. (25)

» the so-called DG-norm:

]| = Z /KVU-Vvdz—F Z /PU[UHU]dS Vo e HY(Q, Tp)

KeT, reFiP
(26)

» L2 norm
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Definition 3 (Oswald’s interpolation operator) Let set

V= Hng,D(Q) ={ve H'(Q);v=gp on 8Qp} for mixed boundary conditions and
V = H1(Q) for pure Neumann boundary conditions. Let 'V be the set of all Lagrangian
nodes needed for construction of a function from S, N V. Oswald’s interpolation
operator Igs . Sup — Suhp NV depending on given boundary conditions is for

vy, € Spp defined by:

1
IHs(vn)(v) = > uplk(v), veNV\NE 27)

|wV| Kewy

gp(v), veENE (28)

wherew, ={K € Tp; v e K}, N§ ={v e NV;v € 8Qp}.

A posteriori error estimates of the discontinuous Galerkin method for linear elliptic and parabolic problems — p.]



Theorem 3 Let 7;, be conforming or nonconforming mesh consisting
of triangles in 2D and tetrahedra in 3D. Assume that triangulation is
regular and locally quasi-uniform. Let gp be the restriction to 9Q2p of a
function in Sy, N H'(Q). For any v, € Sp,, i = 0,1 hold:

D lon=ZEolin < Ca | D he *llonlllt + D hr™*llon — gplif

KeTy rer/ reFp
(29)
where Co- Is a constant independent of A and vy,.
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Galerkin orthogonality of the error

Theorem 4 There holds:

Y Vel <c| D hENf+ Aunlk + Y hrll[Onun] 1R

K¢cTy, KeTy Irer!

h — Opup % + C% hrt .

+ 3 hrllgy — dwunll + €3 S bl funl |l
reFy LeFy,

2 —1 2
+Ciy Z hillgp —unllt |
Lerp?
(30)

where a constant ¢ is independent of ~ and Cyy .
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Duality principle

» (). a convex domain
» Neumann’s boundary condition on the whole

boundary
» Let ¢ € {v; ﬁ [, vdx = 0} be the solution of the dual
problem:
—AN¢p = e In
(31)
Vo-n = 0 on 0f,
and
30 >0 |¢llag < Cllefla. (32)

» conforming, regular and locally quasi-uniform system
of partitions {7, }~¢ consisting of triangles in 2D and
tetrahedra in 3D.
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Duality principle

Theorem 5 There holds:

lello <c| D IF+Dunlichi + Y [[Vun - nl|Ehi

K€Tn reF]
213 213 2
+ 37 Nlgn = Vap - nl2hd + N o?h|[ug] |12
Lery rer}
1/2
2 —1 2
+ 3 arflfun)lE+2 Y bt R ]
rer, TeF}

(33)

where a constant ¢ Iis independent of A.
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Helmholtz decomposition

Theorem 6 (About Helmholtz decomposition) There
exists decomposition

Ve = Vo + curly, (34)

where ¢ € H;,(Q) = {v € H'(Q); v=0 on 0Qp}isthe
solution of the problem

/Vqﬁ-Vvda::/Vhe-Vvdx Vo € H5H(Q), (35)
Q Q

x € H(curl,©2) and n - curl y =0 on 0Qy.
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Helmholtz decomposition

Theorem 7 (Properties of the Helmholtz

decomposition) Helmholtz decomposition (34) is
orthogonal in the sense that

[Vrelld = [Volld + lleurl 15, (36)

In addition, the estimate

IVolla + [leurl xlla < 2]e[g1 ) (37)

holds.
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Discrete normal flux

( (On(up)) — olup), on 0K NF/
Sn(up) =4 On(up) —o(up —gp), on OKNFP  (38)
9N, on OKNFY,
where
= for T 39
o max{hzr, hpr} < )
and
olr = for T'e F;’, (40)
hKII(

respectively.

A posteriori error estimates of the discontinuous Galerkin method for linear elliptic and parabolic problems — p.Z



Discrete normal flux

» Properties:

/fd:z;+/ Ynlup) =0 for VK €7y, (41)
0K

Z/ n-VugdS = Z/ w(up) o dS. (42)
KeT, 7/ 9K\0D KeT K\@QD
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Theorem 8 There holds:

> IVelk < e > (hkIf + Ak

KeT, KeT,

hicl|Zn(un) = Duun | 3crgp + b Nl 3z )
(43)

where c is independent of h.
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A nonstationary problem

Let 2 € R? (d=2 or 3) be a bounded polyhedral domain,
T >0and Qr = x (0,T). Let us consider the problem:

% —Au = f In QT?
u = 0 on 092 x (0,7T), (44)
u(z,0) = u(z) in Q.

Assume that the data satisfy the following conditions:

f €0, T;H1(Q)),

u € L?(Q). (45)
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Definition 4 The weak solution of the problem (44) is
defined as a function u € L?(0,T; H}()) satisfying the
conditions:
<a?§§f) ,v) + fQ Vu(t) - Vo dx
for Yve H}(Q) swv. te(0,7),
u(z,0) = u(z) in Q
(46)
where (-, -) denotes the duality pairing between H}(Q)
and H~1(Q).

(f(t),v)
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Time discretization

» Apartitionof |0,T: 0=t <t;1 < ..<txg=T

» Notation: 7,, =¢, —t,_1, T = max 7,
1<n<N

» The problem (46) is discretized in time by a backward
Euler scheme:

Find a sequence {u"}, ., <5, u™ € Hj(R2) such that

n__ ,n—1
/“ ¢ vda:+/Vu”-Vvdw:/f”vdw for Vo e HLQ),
Q Tn Q Q
(47)

where f* = f(-,t,).
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Discretization In space

» discontinuous Galerkin methods (SIPG, NIPG, lIPG)

» On each time level is considered a system {7}, }1~0
of partitions of () consisting of triangles in 2D and
tetrahedra in 3D.

» The set of all interior edges and edges on boundary
(0Qp = 09) is denoted by F; and FP | respectively.

» Set 7P =F UFP h,= max hg

» The solution of the problem (47) is approximated by
piecewise linear functions:

Sto={v;v € L*(Q),v|g € PHE)VK € T} (48)
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Triangulation - assumptions

Let triangulations {7x, } 4~ 1<,< 5 D€ regular and locally
guasi-uniform.

Assume that there exists a triangulation 7;,, satisfying (6)
and (7) which is a refinement of both 7;,,_; and 7,
1 <n < N and such that

h o
K < C'gr.

ACygr > 0: sup sup sup
1<n<N KeT,,, K'€Thn, KCK' hi
(49)
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Full discretization

For a given approximation «; € S?, of an initial condition
v’ find a sequence {u}'},.,,« 5, ul € 7, such that

n n—1
/ Th — T vp dr + Z / Vuy - Vo, doe — Z /(Vu",; -nylvp| dS
Q K r

Tn KETun PeFID
+6 Z /<V’Uhn>[u"ﬁ] dsS + Z /J[u"ﬁ][vh] dS:/f"vh dx
reFip 't reFip L 2
fOI’ \V//Uh < S;Lll,
(50)

where § = —1, 1 and 0 Is connected with the symetric
form, the nonsymetric form and the incomplete form of
discontinuous Galerkin method, respectively.
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Definition 5 Let {u"},.,» be the semi-discrete solution
and {uy },.,<y be the discrete solution of (44).
Then we set

{e" hanen = 0" —upb1cn<n (51)

Lemma 1 Let a triangulation 7;,, satisfies (6) and (7).
Then there exists an operator I, : H'(K) — PP(K) and
a constant C'4 > 0 such that

g p(v) —vlgx < Cah *lpx Vv e HY(K) VK €Ty,

(52)
where y=min(p+1,s),0<q¢<sandp,s > 1 are
Integers.
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Lemma 2 Let a triangulation 7, satisfies (6) and (7). The
operator Iy, : H'(Q, 7p,,) — Sy, is defined by

Hpplx =iy VK €Ty, (53)
and

Ty (v) =0l g, 7)) < Cally™ ez, Vv € H(Q, Thn),

(54)
where y=min(p+1,s),0<g<sandp,s > 1 are
Integers.
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Definition 6 The operator 19 : H'(Q, T,) — SP, N HE ()
Is defined by

I).(v) = Io,(Mp (v) Yo € HY(Q, Thy), (55)

where Z},_ is Oswald’s operator corresponding to the
homogeneous Dirichlet boundary condition.
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Definition 7 Letn > 1. The local spatial error estimator
Is defined by

up —up ! 1/2
e = hig |1 = 2|+ bV nlloxc + gl oy
" K
—1/2 1/2
> (gl + R
FeFIPNFy

(56)

where Fi denotes the set of all edges and faces of a
triangle and tetrahedra K, respectively.
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Lemma 3 The error ¢" satisfies

n—1 __ _n
Z /Ve”-V?)hdaj:/e c vy, dx
~ K 0 Tn
KeThn
+6 ) /(Vvh n)uf]dS Yo, € S NHIQ). (B7)
r
ISV

Let us consider the splitting of the gradient of the error:
Ve = V™ + curl ™, then

Z ”VQRH%(: Z /KVe”-ng”dx+ Z /I(Ve”curlxn

KeThn KeThn KeThn

J/

N

— 1)
(58)
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Lemma 4 The error ¢" satisfies

3 /Ve”.ngda::/(f”—un_un1)(;501:13
K Q

~ n
KeTy,

- > Vul -ngdS V¢ e HHQ). (59)
KeT, 8

Z /Ve curl x de = — Z/ upcurl x - ndS
oK

Vx e (H' ()", (60)

wherek =1ford=2and k£ = 3 for d = 3.
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Kefjihn K Kefjihn
n n—1
Uy, — U n n
70 Y | (= ) (00 - ) da
=~ K Tn
KEThn
r Y [ v - 0 ds
KE;ZV'hn oK

10 3 [ (V80" m) ] ds

reri
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Theorem 9 (Upper error bound) Let {u"}, ., <5 be the semi-discrete
solution and {u}, }, <, <5 be the discrete solution of (44). Let
1 <T < N. Then the error e” defined in 5 satisfies

D |\6T1|K+ZTn > Iver|ik

KE;ZV’]’LT - KEThn
< > %+ Z C1(n (62)
KEThl

+ Z Ca(n")? max{h;, 7},
n=1

where constants (1, Co > 0.
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» f. - plecewise constant and equal to f(t,) on each
interval (¢,_1,t,], 1 <n <N

> {un}ogngj\‘f = U

Definition 8 Let v be the weak solution and {u"}, ., -y
be the semi-discrete solution of (44). Then we set

er = U — U, (64)

where u, Is precisely as in (63).
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Definition 9 Let1 < n < N. The time error indicator is
defined by

1/2 —1
=l Pl — Y 0T (65)
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Theorem 10 (Time upper error bound)
Let {vu"},,, <y D€ the semi-discrete solution

and {uy },.,<n be the discrete solution of (44). Let
1 <T < N.Then

tp
len(t2)I + /0 [Ver(s)IIBds < 201 = frl2a00p1(

2
+ZZ ;') +162/ _uhT()Hl(Q,ﬁm)dS'

(66)
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Upper error bound - full discretization

Definition 10 Let 1 < n < N. The full error indicator at
time t,, is defined by

2
e,

2 2 2
E(tn)” = |lultn) — u"([g + lu” = upllg + ‘ rr

L2(0,t,; H-1(Q))

H — uhT

L2(0,t,; H-1(Q))

" /0 IV — ur)(s)IB ds

tn
[l = )6 7,
(67)

A posteriori error estimates of the discontinuous Galerkin method for linear elliptic and parabolic problems — p.



Upper error bound - full discretization

Theorem 11 (Full error bound) Assume that the
assumptions of Theorems 9 and 10 are satisfied. Let
1 <T < N.Then

T
E(ty)® <11) (nf")*+ 1787 » ||veOH§(+03 > 1%
n=1 KE,ZN'hl KE’ZN'}A

T
+ 11{|f - fr”%%o,tf;[{—l(g)) + Cy Z(Un)2
n=1

T
+C5s Z(n”)2 max{hy, 7},
n=1
(68)

where constants Cs, C4 and Cs > 0.
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