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1. Notation

Two well-known methods for computing the GCD:

e the Euclid’s algorithm

e manipulations with the Sylvester matrix

Let
deg(f)...the degree of f;
GCD (f,g) ...the greatest common divisor of f a g.

where m > n, agam 7 0, bgb, £ 0.



The Sylvester matrix S(f,g) € C(m+Tn)x(m+n) i5 equal to

apg a1 ... Qm—_1 Qm 0 ‘e 0
O agp ... ... QaQm—_1 am ... 0
O ... O ag ai cee Qm—_1 Qm
sho=|- - - - - - - -
bp b1 ... b1 bn, 0 e 0
O by ... ... bho_1 bn 0
0 ... O bo by eeo bp—1 bp

The kth Sylvester subresultant S € C(mtn—2k+2)X(m+n—k+1) g

formed from S(f,g) by deleting the last (k — 1) columns, the last
(k — 1) row of the coefficients of f and the last (k — 1) row of the
coefficients of g.



2. Euclid’s algorithm and transformations of Sylvester matrix

Let us define fo := f and f1 := g. The polynomials in the successive
divisions in Euclid’'s algorithm are defined by

fi(x) = fijt1(x)qj(x) + fjya(x), 7 =0,1,2,...,
where deg fj12 < deg fji1-
If fi+1=0and f; #0 Vj <t then fy = GCD(fo, f1).

For illustration, let fp and f; be of degrees 5 and 2 respectively:

fo(x) = aopr® + a1x? + asx® + aszr? + asx + as,
fi(x) = bgmz + biax + bo.



The Sylvester matrix S(fo, f1) for the polynomials fg and f; is

ap a1 a2 agz agq ar 0
O ag a1 as asg a4 as
bp by bo 0 0 0 O
S(fosf1)=1] 0 by by b2 0 0 0
O O bg by bo 0 O
O 0 O by by by O
O 0 O O by by bo

Now we will formulate the modified Euclid’s algorithm:

co £a0m5 + a1w4 + azw?’ + a3w2 + aqx + a52 +5s0 &bowz + bix + bzlw?’

fo(x) fi(z)
_ 4 3 2
= 0 + (cpa1 ;I— sob1) T* + (coa2 :I; sob2) €° + cpag x” + coa4 T + Coas -
RG RE RO RGO RE
1 2 3 4 5

\ . 7

hy(z) := agl)f”4 + agl)flf?’ + aél)mz + afll)m + agl)




co 0 sp O 0 O O

O cg 0 so 0 0O

(1) O 0 1 0 00O
(coys90):=1 0 0 0 1 00O

O 0 0 0 100

O 0 0 0 0o01O0

O 0 0 0 OO0 1

G$M (co, 50)S(fos 1)

OO O R CO R R
“h ?1) ?‘1) ?1) oD

0 ay
b bo O 0 0 0
bo by bo 0 0 0
0
0
0

S(l)(f()afl) .

bo by bo 0 0
0 bo by bo 0
0 0 bo by bo

0
0
b
— 10
0
0
0

where

a(l) | cpa; + sgb; for 1=1,2
. coa; otherwise -



Let agl) # 0. Then deg(hyg) = 4. In the opposite case, the pro-
cess would be performed with the polynomial of degree less than 4.
The Euclid’'s algorithm proceeds according to the following schema:

c1 Sag ):13 + ag )w + az(,, )w + afl )w + ag )) +s1 (b()CE‘ + b1z + bz) 22

ha(x) fi(z)
=0+ (clagl) -+ 31b1> xS + (claz(,)l) -+ 31b2> r? + claé(ll) T + claél)
RG o a(? al?

ha(e)i—alas+aPe+aP ot al?

The numbers ¢1 a s1 are again chosen to remove the coefficient by
z. The corresponding matrix operation consists of premultiplying



G\ (e1,51)8M (fo, f1), where

cit 0 0 sy O OO

O ¢ 0 O s1 0 O

(1) O 01 0 0 02O
G (c1y81)=| 0 0 0 1 0 00O
O 0 0 0 1 0O

O 0 0 0 0 10

O 0 0 0 0 O01

We obtain 5(2)(f0, fl) — Ggl)(cl, 81)5(1)(f0, fl)

0O O ag2) a?) a%2) a%2) 0
O 0 O a,22) a,32) a,42) aéz)
bp b1 by 0 0 0 0
— 0 by by bo 0 0 0
0 0 by by bo 0 0
0O O 0 bo by bo 0
O O 0 0 bo by bo




where

(1)

a2 o ( ) + Slbz—l for 1= 2,3
otherwise

Let a2 # 0. Let the numbers c2, sy and then c3 a s3 remove the
coefficients by dominant power. The last two divisions vield the
polynomials

ho(z) = %) 2+a§))w+a<3) = coh3(x) + safy(z)x
hi(z) = oz + o’ = csha(a) + s3fi()

where a$®) # 0 and a$") # 0.



If we analogously define the matrices Ggl)(cz, $2), Gz(,)l)(C;?,, sg), then
5(4)(f09 fl) .= Gi(),l)(c?n 33)Gg1)(029 32)5(2)(f09 fl)

0 0 0 0 a %4) 0
0 000 0 a oY
bo by b 0 0O 0 O
— O bg by b2 O 0 0
0 0 bp by by 0 0
O 0 O b by bo 0
0 0 0 0 by by b

Define
G = Gz(;l)(%, 83)Ggl)(02, Sz)Ggl)(Cl, Sl)G(()l)(COa 50)
and

P, = |e3, eq,e5,€6,€7,€1.€2] .

Then the first stage of Euclid’ algorithm can be written in matrix



formulation as follows

I bp b1 by O 0 0 0
0O bg by by 0 0 0
0O 0 by by bo 0 0
O 0 O bg by bo 0
PiG1S(fo, 1) = | — — — — + — — —
0 0 0 O bp b1 b2
000 0 | aV a%‘*) 0
0 0 0 0 0o o a{Y

We have obtained the coefficients of the polynomial hy in the
last two rows. Summarizing all steps of the first stage of Euclidean

algorithm, we obtain
3 2
= — h , °
\6362230]80(33)4 —(c3cacy180x” + ci),vceslaz + c3s9x + 33)J]E(:13) R Al/(az)
fo(x) qo() fi(x)  fa(x)

Hence we have

fo(x) = Go(z) f1(z) + f2().



We will shortly demonstrate on our illustrative example how to pick
the numbers ¢ and s. If we take

co=1 and sg = —— .

then the division in Euclid’s algorithm has the following form

(aoaz + alcc + a,za: + agcc + aqx + a,5) — (bO:c + b1z + bz)(—)a:

fo(x) fi(x)
b b
:O—|—<a1—a2—01>a: —|—<a2—a2—02):c3—|— a,3:c—|—a,4:c—|— as
~ ~~ -~ N ~~ o (1) (1) (1)
(1) (1) as Ay asg
aq g

The second choice of e¢ and s in the first step:

bo ag
co = .
Va3 + 2 Va3 + 2

d Sgp = —



We will again use the original notation, f and g
for polynomials, m =deg(f) and n =deg(g).

Theorem 3.1 Let f and g be the polynomials of degrees
m and n respectively. It is assumed that the polynomials
fo(x), fi(x), fo(x),..., which are constructed by Euc-
lid’s algorithm satisfy: fi1+1 = 0, f; # 0 for 3 < t. The
following statements hold:

1) There exists a nonsingular matrix Z of order m + n
such that the matrix ZS(f,g) has the block form

"Ry | Ri2 |

ZS(fag) — — - — ?
0 | Ra2




where Ry IS a square upper triangular matrix with
non-zero diagonal elements, and Rg 2, the resultant
matrix after transformation of the Sylvester resultant
matrix S(fi—1, ft), is a square upper triangular matrix

of order (nt—1+n¢). The matrix Ra 2 has the following

forms:

(a) If ng > 0, then the first ny_1 diagonal elements of

Ry 2 are non-zero. The last ny rows of Rg o are zero.

The polynomial f is equal to the GCD of (f,g).



(b) If ny = 0, then f; =: c # 0 and Ra2 = clp, ;. In
this case rank S(f,g) = m + n.

Theorem 3.2 Let f and g be the polynomials of degrees
m and n respectively, 1 < k < min(m,n) and let S
be the kth Sylvester subresultant. Then the following

statements are equivalent:



rank S(f,g) = m+n — k < deg GCD (f,g) = k,

rank S(f,g) <m +n — k < deg GCD (f,g) > k.

rank S, = m+n — 2k + 1 < deg GCD(f,g) = k,

rank S, < m+n —2k+1 < deg GCD(f,g) > k.




3. Inexact polynomials

The kth Sylvester subresultant has the form

ag ay am-1 @m0 ... 0 ] uT (the first row)
0 ag Am—2 Apm—1 A, 0
g, — 0 0 ao a; Ap—1 Qm
e i O T
bp b1 ... b,_1 b, 0 e 0
O by ... b,_1 b, 0
0 ... 0 by by ... byy b, | m+n—2k+2
m4+n —V(k —1)
R
u
S = K|, where
Ak

up € Rm—l—n—k—l—l and Ak = R(m—l—n—Zk—l—l)X(m—l—n—k—l—l)_

\




Theorem 3.3 Let f and g be the polynomials of degrees
m and n respectively, 1 < k < min(m,n) and S the
kth Sylvester subresultant. Let S,Z = |ug, Ar] where uy
is the first column of the matrix Si Then the following
statements are equivalent:

a) deg GCD(f,g9) = k < the equation Apy = ug

possesses exactly one nontrivial solution.

b) deg GCD(f,g) > k < the equation Ay = ug
possesses at least two linearly independent solutions.

(Ben Rosen, Kaltofen, Yang, Zhi, Winkler)



Let an integer k, 1 < k < min (m,n) be given.
We seek perturbations §f(x) and dg(x) of f(x) and g(x) respecti-
vely,

5f(z) = dapz™ + darx™ ' + .-+ + dam_12 + dam,
5g(z) = Obox™ + b1z L + -+ + Sbp_1x + Sbn,
such that

deg (GCD(f+46f,g+dg)) >k and
16 FII? + ||6g]|? is minimal.

The polynomials f(x) and g(x) are inexact, an integer k € [1, min(m, n)].
We want to compute the minimal perturbation of the coefficients of
f(x) and g(x) such that the degree of the greatest common divisors
of perturbed polynomials equals k.

...to compute a perturbation matrix [hg, Ei] with the same block
structure as [ug, Ag] such that the equation

(A + E)y =ur, +hy y=[y1,y2,--., ym+n—2k+1]T



possesses exactly one nontrivial solution. Hence we solve the con-

strained minimisation problem,

min ||  hy Ej | such that (Ag + ER)y = ug + hg.

Ir



...z; is the perturbation of a; for : = 0,...,m,

... Zm44 IS the perturbation of b; for + =0,...,n + 1.

The structured error matrix [hy, Ei] € R(mtn—k+1)X(m+n—2k+2)

20 | | Zmia
Z1 | 2o | Zm+2
E | : = | Zm4n : - Zm4
Zm—1 | Z1 | Zm4n+1  2Fm4n Zm+-2 Zm+1
Zm | Zm—1 - | Zm4n+1 - Zm-+2
| Zm ' : | ' Zm+n :
| Zm—1 | Zm+n+1  2Fm4n
i | Zm | Zm+n+1




Define the (m+n —k + 1) X (m + n + 2) matrix Y, =

7

0 | Yn—k+1
Y1 | Yn—k42 Yn—k+1
Y1 | Yn—k+2
: . : |
Yn—k - R | | Yn—k+1
Yn—k e Y1 | Ym+n—2k+1 Yn—k+2
. . | Ym4n—2k+1
Yr—k - |
Yn—k |
- | Ym+4n—2k+1 |
m 1 1 n —|Y 1

and the matrix P, € R(m+n—k+1)x(m+n+2)

h’kt — sz,

and

I 0
Pk:[0m+1 O].

Yi.(y)z = Eg(2)y

@ -

"




The residual vector

r=r(z,y) =up + hp — (A + E)y.

The SNTL method.

We seek a vector z = {2z, 21, -+ s 2mini1} € RMTTL
such that the system

(A + Er(2))y = ug + hy(2)

has just one nontrivial solution and

|z]lo IS minimal.



Let z and y be initial aproximations.
We express r(z + dz,y + dy) and we try to calculate shifts 4z, dy
such that

lr(z+dz,y + dy)|| = 0
R r(z,y) — (Yg — Pg)oz — (A, + Ep)dy
This leads to the iterative process for dy and dz where in the each
stage the LSE problem is solved (See Reference Winkler, Kaltofen):

n%izn | ' D 0| [ gz ] — (—Dz)/ subject to
I(D(2462)|

(V=P (At B0 ]| o | = (),

N\ 7

r(z—i—éz,?&—l—éy)zo

where

D = diag(Dq1,D2), D= (n—k+1)I,,+1, D2=(m—k+1)I,4;.



Denoting

B _ [ (Yk . Pk) ’ (Ak + Ek) } e R(m—l—n—k—l—l)x(2m+2n—2k—|—3)
A = [D 0} e R(m+n+2)x(2m+2n—2k+3)

d — ’I"(Z, y) c Rm—l—’n—k—l—l

b = —DzcRmtnt2

w —

0y

We can see that the computation of an approximate GCD reduces
to the LSE problem
min ||Aw — b||, subject to Bw =d. (1)
w

[Bjork, Van Loan]



The exact polynomials f and §:

||f(a:)|| denotes the Euclidean norm

cy € R™+1 and ¢, € R?™! ... random vectors with components in
[—1, 1] and € a small positive number (perturbation)

[Fil
legll
cf i ... th aith component of ¢¢, 2 = 0,1,...,m. The perturbation
of g is defined analogously. Let us write

0ad; = €

Cf, i

m m
cpy flx) = (a;+da)x™ =Y aa™"
crll —~ 2

n n
cgi g(x) =) (b +db)a" " = ) au"




Polynomials f(x) and g(x) are rearranged:
a;

1
(ITk=o lar)™+1
n_ . ~ bz’
g(z) =) biz""", bi=-"—— 1
i=0 (ITk=0 [bk) "1

9

m
flx) =) aazm"", a; =
1=0

Example 1. (Jan Eliad) u = 10%. Exact polynomials

f(x) = (¢ — 1.2)*(x + 2)°(z — 0.5)4,
j(x) = (x — 1.4)%(x + 2)%(x — 0.5)%.

It is immediately to see that

GCD(f,§) = (= + 2)%(z — 0.5)*
— 27 + 42 + 1.52° + 7.52% — 0.937523 + 6.375x2 — 3.25x + 0.5

e ===}~ {i&)



f(x), g(x) are coprime.
If deg GCD(f,§) = k = rankS(f,§) = m + n — k. In our case
m=13, n=9 and k= T7.



f(x) g(x)
13 1
12 3.20025
zll —8.26093
210 |  —26.49540
9 38.00476 1
8 85.59627 1.199981
x’ | —121.21627 | —7.739988
% | —109.89824 | —3.859967
x° 223.97294 | 23.002372
¥ | —17.51887 | —5.699975
3 | —156.15339 | —22.937378
2 120.28351 | 22.094884
xl | —36.63814 | —7.769948
20 4.14757 0.979989

f(x) g(x)
13 1
x12 3.19998
1l —8.26007
210 || —26.49212
9 38.00016 1
8 85.58606 1.199982
x’ | —121.20177 | —7.739994
z% | —109.88508 | —3.859969
x° 223.94605 | 23.002392
¥ | —17.51684 | —5.699980
3 | —156.13476 | —22.937396
2 120.26907 | 22.094900
xl | —36.63364 | —7.769959
20 4.14719 0.979990




GCD(f,§) | GCD(f,d)
x’ 1 1
26 4 3.999978
x° 1.5 1.499947
x| —7.5 —7.500006
x3 || —0.9375 —0.937463
x2 6.375 6.375001
xl | —3.25 —3.250011
20 0.5 0.499999

4. Computing the GCD using c-s transformation

An example will be presented. Let
f(x) = (z+3)%x+2.2)%x + 0.5)%(x — 2)*(x — 3)?
g(x) = (x+3.2)(x+3)%(x + 1.1)(x? — 0.01)(x — 3)%(x — 4)2.
Denoting u = GCD(f,g), we have
u(z) = (x + 3)%(z — 3)% = z* — 1822 + 81



Using FMLIB in our program we have obtained the exact result

u(x) = 1.000000000000000z* — 18.0000000000000002
+81.000000000000000

The same example has been calculated in MatLab and the incorrect
results have been obtained.



5. QR-factorization method for computing
the greatest common divisor
A companion matrix associated with the polynomial f, where

fl) =2+ a1z™ '+ + am_12 + am,

iIs the m X m matrix

[0 1 0 AR | B

0 0 1 :

Cm — 1
| —am —QaQmpm-1 —ap-2 ... —a2 —aj |

It is assumed that the coefficient ag = 1. Now we will summarize
the basic attributes of the matrix g(Cy,), where

g(x) = bpx™ + b1z ' + -+ + bp_12 + bn,

in detail described in the Barnett's book. (S.Barnett: Polynomial
and Linear Control System.)



Let w = [bn,by—1,--.,b1,b0,0,...,0/T € R™. Then the matrix po-
lynomial g(Cy,) is given by

ul

uTCm
Q(Cm) — -
uTCn";’_2
uTCn";’_l

The matrix g(Cy,) is very important.
The GCD(f,g) can be obtained very easily from the matrix g(Cpn,).
Let us remark (S. Barnett) that

deg(GCD(f,g)) = m — rank(g(Cm)).

Theorem 5.1 Let J,, € R™*™ and S(f,g) be matrices of the
form

S1,1 51,2

IJm = [em,em—1,...,€2,e1] and S(f,g) = S2,1 52,2

9




where S11 € R"*™ and S35 € R™*™. Then the Schur’s comple-
ment

S;,Z = Jm Q(Cm)Jm-

The following idea (Barnett, Zarowski) will be illustrated for the
polynomials of degree m = 4 and n = 3. Let

f(x) = x4+ a1w3 + azm?’ + agx + asgx,

g(x) = bom?’ + blwz + box + bs.



Let the Sylvester matrix be split into the four blocks

S(fvg) —

1 a1 as ag a4 0 O
0O 1 aq ar asg ag 0
O 0 1 ai; as asg ay
|- = =+ = = = = | _ | 511 512
bp b1 bo bs 0 0 O S2.1 52,2

0 by by bob b3 0 O
0 0 b by by by O
O 0 O bp by by b3

It is clear that all blocks are Toeplitz matrices. The Schur comple-
ment follows from the following multiplication:

S1,1 51,2
0 559

I3 0

. S1,1 51,2
—52’151_,1 14

S2.1 S22

9

where
Sézkz) = S22 — 52,151_,%51,2



Theorem 5.2.[Barnett and Zarowski] There exist square matrices
U and (@) such that

US(f? g) — Rla
QS;,z — R29
where Ry and Reo are upper triangular matrices. The last non-

vanishing rows of both triangular matrices contain the coefficients
of a GCD(f,g).

Moreover, there is an orthogonal matrix Q such that

Qng(Cm)Jm = Ry

[Zarowski], where



[ x r T X x x |
0 x r T X r x
R_OO r T X . T x
|0 0 ..0dy di .. dg_q di|’
oo..0 o0 o0 .. O 0
_OO..OOO.. 0 O_

and d(z) := doz® + diyzF 1+ .- - + di_qz + di is the GCD of f and
g. []

An example: the same polynomials are considered, i.e.,

f(x) = (x4 3)%x+2.2)%x + 0.5)%(x — 2)*(x — 3)2
g(x) = (x+3.2)(x+3)%(x + 1.1)(x? — 0.01)(x — 3)*(x — 4)2.



Let us remark that u = GCD(f,g),
u(z) = (x + 3)%(x — 3)? = «* — 1822 + 81.

We have obtained again the exact result. The same example was
calculated in MatLab and the polynomial p has been obtained.

p(x) = 1.000000000000000x* — 0.000000141260423x3
—17.99999947553007522 + 0.000000973322225x
+80.999996276344888

The Euclidean norm ||p — u|| = 3.886899375985486¢ — 6.

The second approach to construction of g(C,,) was based on di-

rect computing of Schur’s complement Sg"z. We have obtained the
polynomial p such that

p(x) = 1.000000000000000x* + 0.000001622363975x>
—17.999998869020878x2 — 0.000012113435782x
+80.999991505224259



The Euclidean norm ||p — u|| = 1.492674512347724e — 5. At the end
of this lecture we will present an interesting example.

Let
f@) = ]] (-4
1€Ny
g(z) = ][ (-1,
1€N>

where N1 = {1,2,...,20},
Ny = {1,2,...,10} U {—1,—2, -3, —4}

In this case we have again obtained the exact solution.



The End
Thank you for your attention!



