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Preface

This book comprises papers that originated from the invited lectures, survey lec-

tures, short communications, and posters presented at the 16th seminar Programs

and Algorithms of Numerical Mathematics (PANM) held in Dolńı Maxov, Czech

Republic, June 3–8, 2012. All the papers have been peer-reviewed.

The seminar was organized by the Institute of Mathematics of the Academy of

Sciences of the Czech Republic. It continued the previous seminars on mathemat-

ical software and numerical methods held (biannually, with only one exception) in

Aľsovice, Bratř́ıkov, Janov nad Nisou, Kořenov, Lázně Libverda, Dolńı Maxov, and

Prague in the period 1983–2010. The objective of this series of seminars is to pro-

vide a forum for presenting and discussing advanced topics in numerical analysis,

computer implementation of algorithms, new approaches to mathematical modeling,

and single- or multi-processor applications of computational methods.

More than 50 participants from the field took part in the seminar, most of them

from Czech universities and from institutes of the Academy of Sciences of the Czech

Republic but also from Austria and Slovakia. The participation of a significant

number of young scientists, PhD students, and also some undergraduate students is

an established tradition of the PANM seminar and it was observed this year, too.

We do believe that those, who took part in the PANM seminar for the first time,

have found the atmosphere of the seminar friendly and stimulating, and are going to

join the PANM community.

The organizing committee consisted of Jan Chleboun, Petr Přikryl, Karel Segeth,

Jakub Š́ıstek, and Tomáš Vejchodský. Ms Hana B́ılková kindly helped in preparing

manuscripts for print.

All papers have been reproduced directly from materials submitted by the au-

thors. In addition, an attempt has been made to unify the layout of the papers.

The editors and organizers wish to thank all the participants for their valuable

contributions and, in particular, all the distinguished scientists who took a share in

reviewing the submitted manuscripts.

A few days before the final release of these proceedings, we were hit by the sad

news that our colleague Josef Daĺık suddenly passed away. In our minds, he will be

remembered also as a regular participant of PANM seminars. His contributions, not

only in the proceedings you are just reading, will be recalling him to our community.

J. Chleboun, P. Přikryl, K. Segeth, J. Š́ıstek, T. Vejchodský
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DRIVER’S INFLUENCE ON KINEMATICS OF ARTICULATED BUS

REAR AXLE
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Zemědělská, 613 00 Brno, Czech Republic

barton@mendelu.cz

Abstract

This paper studies kinematic properties of the rear axle of the particle coach as

function of driver’s activity. The main goals are the prediction of the trajectory, the

computation of the vector of velocity of each wheel of the rear axle as a function of the

real velocity vector of the front coach axle and the real curvature of the bus trajectory.

The computer algebra system Maple was used for all necessary computations.

1. Introduction

1.1. Classical problem of kinematic

In following computations we should use these main variables: X(t), Y (t) – Gen-

eral coordinates of the moving body, later coordinates of the midpoint of the central

axle of the articulated bus, which is equal to the joint point of the rear – towed axle.

x(t), y(t) – Coordinates of the midpoint of the towed axle. L – Constatnt distance

beween midpoints of the central axle - joint, and rear - towed axle, see Figure 1.

The classical problem of kinematics is the computation of the speed ~V (t) and

the acceleration vector ~A(t) of a body as a function of time when the location of the

body is given by the functions ~P (t) = [X(t), Y (t)]. The next step is the computation

of the tangential acceleration At(t), which changes the absolute value of the velocity

and the normal acceleration An(t), which changes the direction of the velocity. And

finally, the function of the center of the osculation circle of the trajectory ~C(t) and
its radius R(t) are derived. These functions can also be found in [4, 2, 9].

1.2. The influence of the driver

The driver controls the bus using the gas and the brake pedal – he controls the

absolute value of the velocity of the bus |~V (t)|. Furthermore – using the steering

wheel – he controls the radius of the osculating circle R(t), on which the bus is

currently moving. For further calculations it is useful to use the inverse value of

the radius of the osculation circle – the curvature of trajectory k(t) = R(t)−1. By

combining these two controls the bus driver keeps the bus moving smoothly on the

road.
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2. Inverse problem

Let us assume that we know the temporal behavior of driver’s operations. Thus

we know the functions of the speed magnitude |~V (t)| = v(t) and curvature k(t).
Then the problem is to compute the trajectory of the bus and the related kinematics

variables. For this we need to solve a non-linear system of two ordinary differential

equations of second and first order, they are solved in [1, 5]

√

Ẋ2 + Ẏ 2 = v(t),
Ÿ Ẋ − ẌẎ
(

Ẋ2 + Ẏ 2
)

3

2

= k(t). (1)

After some algebraic manipulations the equations (1) are transformed to an ex-

plicit system of two differential equations of order two:

Ẍ =
−Ẏ k(t) v(t)2 + d v(t)

dt
Ẋ

v(t)
, Ÿ =

Ẋ k(t) v(t)2 + d v(t)
dt

Ẏ

v(t)
. (2)

Given an initial velocity v0 = |~V (0)| and its initial direction defined by the

angle φ0 and the initial position of the bus [X0, Y0], the solution of (2) can be found

to be (see [4,5])

X =

∫ t

0
v(τ) cos(f) dτ +X0 , Y =

∫ t

0
v(τ) sin(f) dτ + Y0 , (3)

where f = φ0+
∫ τ
0 v(τ) k(τ) dτ . This is an analytic solution, however, even for simple

functions v(t) and k(t) it will not be possible to compute explicit expressions for the

integrals. A considerable advantage of this result is that it allows to numerically

integrate the position for any given time t. We have not to be concerned with

accumulation of rounding errors as e.g by integrating the system (2) with some

numerical methods, like Runge-Kutta, see [8].

3. Generalized tractrix as model of the trajectory of the rear axle

Let us assume that the joint of the articulated bus is located in the middle of

second axle and that the trajectory of the joint is given by [X, Y ]. The centre of the
rear axle, given by [x, y] - the towed axle - is to be computed. The centres of both

axles have to have a constant distance L and the velocity vector of the center of the

towed axle has to pass the joint, see Figure 1.

From these conditions (see [3]) we obtain the system of differential equations

[X, Y ] and [x, y].

ẋ=
∆X

(

∆X Ẋ +∆Y Ẏ
)

L2
, ẏ=

∆Y
(

∆X Ẋ +∆Y Ẏ
)

L2
, where

∆X=x−X,
∆Y =y − Y.

(4)

It is a system of two non-linear differential equations of first order, which for

simple functions X and Y is relatively easy to solve.
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But if we introduce for X and Y the expressions of Equations (3), we get a very

complex system of differential equations, for which it is first necessary to solve for X
and Y by the numerical integration. This combination of numerical integration

and solving of differential equations is too complex for the computer algebra system

Maple. It is not possible to use successfully direct numerical solution of equations

using the command dsolve together with the parameter numeric.

3.1. Numerical integration of the equation of motion

It is possible to solve the system (3) together with Equations (4) numerically

using Runge-Kuttas method, see [8]. We implemented this in Maple as procedure

RK45. This procedure determines the position and velocity of the towed axles centre

at time t + ∆t. The next procedure, named STEP, see (5), defines the magnitude

of time step ∆t using a step size control. For the first iteration a random time step

magnitude is chosen, e.g. ∆t = 1 and the position for this time is calculated. Time t
and coordinates x, y are saved in the vector R1. Similarly the position is calculated

in the same procedure, but in two steps with a half time step size ∆t/2 and saved

as a vector R2. If the difference between these vectors is smaller than the required

accuracy, |R1−R2| ≤ 10−6, we add the resulting position, saved in the vector R1 to

vector Λ. Otherwise we reduce the size of time step by half and repeat the process.

At the end of the iteration procedure the vector Λ will contain vectors – ordered

triplets containing the time and the towed axles position coordinates of the each

iteration step.

STEP := proc(U) local l, R2; global R1,Λ,∆t, t;
l := U []; R2 := [RK45(RK45(l, ∆t

2
), ∆t

2
)];R1 := [RK45(l,∆t)];

if sqrt(add(u2, u = R1− R2)) ≤ 10−6 then Λ := [Λ[], R1]; t := t +∆t;
else ∆t := ∆t

2
end if

end proc

(5)

4. Practical application

Let us take as example a passing of a rectangular turn when the bus is breaking.

For this case we consider

v(t) = V0 − a t, k(t) =
4 t (Tf − t)

T 2
f ρ

, (6)

where V0 is the initial velocity, a is deceleration, Tf is the period of turn passing

and ρ is the least diameter of a passed turn.

If we choose the direction in time t = 0 parallel to x axis, therefore φ0 = 0, the

turn will be finished at the moment, when the vector of immediate velocity [Ẋ, Ẏ ]
will be parallel to y. Therefore it is stated that Ẋ = 0. From this condition it is

obvious, that because of Equation (3) we have (details can be found in [6, 7])

Tf =
2 V0 −

√

4 V 2
0 − 6 a π ρ

2 a
. (7)
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4.1. Numerical integration

As particular values we take V0 = 10ms−1, a = 0.5m s−2, ρ = 20m, x0 = 0m,

y0 = 0m and L = 4m. For these values the time necessary to pass the turn is Tf =

5.45681 s. The initial time is t = 0 s and for the initial time step we choose ∆t = Tf .
Now we create the Λ list, its first element will be [t,−L, 0], then Λ := [[0,−4, 0]].

Procedure STEP determines the first step size of the time step as ∆t =
Tf

128
=

0.04263 s and then executes 128 integration steps. For specific integration times it is

possible to compute using Equations (3) the position of middle axles centre point.

Due to Figure 2 and the following relationship (8) it is hence possible to calculate

the position of front, middle and rear – towed axle.

Figure 1: Deriving the motion equa-

tion of towed axle.
Figure 2: Calculation for single wheels

of a bus.

Wheel = [X, Y ] + d [cos(α), sin(α)] + r [− sin(α), cos(α)], (8)

for d we can take d1 – the distance between centrepoints of middle and front axle, or

d2 – the distance between middle and rear axles centrepoints. For α we can take ψ
– the directional vector pointing from the middle axle to the front axles midpoints.

This is the directional vector of the velocity [Ẋ, Ẏ ] or φ – the directional vector

pointing from the joint of the middle point of the rear axle, r = wheel spacing of

single axles. Angular sizes φ and ψ could be easily solved using the vector calculation.

The result of the calculation could therefore be a graph on Figure 3., depicting the

trajectories of single wheels, or a graph on Figure 4, which represents the angle of

cranking of the bus joint.

5. Conclusion and discussion

We have developed a method which allows for any velocity function v(t) and

trajectory curvature function k(t) to compute all important kinematic variables of

the the articulated bus. This concerns not only the wheels but can be applied

for any arbitrary point inside the bus. Just take for that the appropriate sizes of

variables d1, d2, and r matching the Figure 2 and Equation (8). Furthermore, it

is possible to determine the acceleration of any point, including the points which

correspond to points of contact between the wheels and the road. This knowledge

12



Figure 3: Trajectory of separate wheels of the bus.

of acceleration could be used for the determination of the adhesion threshold limits.

This procedure could be also used for the inverse problem. From the moment of the

adhesion loss to breakaway it is possible to experimentally find such a velocity and

trajectory curvature functions, that caused the skid. Therefore it is possible from

the trajectory – a braking track – to estimate the drivers actions, that preceded this

event.

From the knowledge of acceleration inside the bus it is possible to perform the

calculations of general force, affecting the whole bus as well as individual passengers.

Knowledge of this general force is an important factor affecting the stability of the

bus. The force affecting the single passenger is a limiting factor for their safety. The

method mentioned above allows us to simulate the drivers behavior and the impact

on safety of passengers due to their position inside the bus.

Acknowledgments
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Figure 4: Angle of cranking the joint of the bus.
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Institute of Mathematics AS CR, Prague 2013

WAVELET BASES FOR THE BIHARMONIC PROBLEM
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Abstract

In our contribution, we study different Riesz wavelet bases in Sobolev spaces based

on cubic splines satisfying homogeneous Dirichlet boundary conditions of the second

order. These bases are consequently applied to the numerical solution of the bihar-

monic problem and their quantitative properties are compared.

1. Introduction

Wavelets are an established tool for the numerical solution of operator equations.

One of advantages of wavelet methods consists in the existence of a diagonal precon-

ditioner. This preconditioner is optimal in the sense that the condition number of

the preconditioned stiffness matrix does not depend on the size of the matrix. Fur-

thermore, a well-known compression property of wavelets enables efficient adaptive

solving of operator equations.

In numerical simulations, spline-wavelet bases are of special interest, because they

are known in a closed form, they are relatively smooth and they have a small support

in comparison with other wavelet bases, e.g. orthonormal wavelet bases. For the nu-

merical treatment of operator equations wavelet bases defined on bounded domain

are needed. They are usually derived from wavelet bases on the interval. Recently,

several constructions of cubic spline-wavelet bases on the interval adapted to the

second order homogeneous Dirichlet boundary conditions were proposed [1, 3, 9, 10].

The bases in [4, 10] have local dual basis functions, which is important in some

applications, such as solving nonlinear equations, but for solving partial differential

equations the locality of duals is not necessary. Therefore in a construction in [8], the

locality of duals is not required. The resulting basis has superb quantitative proper-

ties, but wavelets have no vanishing moments. In [5], we also gave up the locality of

duals and we designed a cubic spline-wavelet basis with vanishing wavelet moments

adapted to homogeneous Dirichlet conditions for the biharmonic problem. In this

contribution, we show that our basis have similar excellent quantitative properties as

basis from [8] and due to vanishing moments it can be used also in adaptive wavelet
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methods. In [5], a proof that this basis is a Riesz basis of the space Hs
0 (0, 1) for

1.5 < s < 2.5 is presented and properties of the projectors associated with this basis

are derived.

2. Construction of wavelet basis

We consider the domain Ω ⊂ R
d and the Sobolev Space H2

0 (Ω) with the standard

H2
0 (Ω)–norm denoted by ‖·‖H2

0
(Ω) and the H2

0 (Ω)–seminorm denoted by |·|H2

0
(Ω). Let

J be some index set and let each index λ ∈ J take the form λ = (j, k), where
|λ| := j ∈ Z is a scale or a level. Let

l2 (J ) :=

{

v : J → R,
∑

λ∈J

|vλ|
2 <∞

}

, ‖v‖l2(J ) :=

(

∑

λ∈J

|vλ|
2

)1/2

. (1)

A family Ψ := {ψλ, λ ∈ J } is called a wavelet basis of H2
0 (Ω), if

i) Ψ is a Riesz basis for H2
0 (Ω), i.e. the closure of the span of Ψ is H2

0 (Ω) and

there exist constants c, C ∈ (0,∞) such that

c ‖b‖l2(J ) ≤

∥

∥

∥

∥

∥

∑

λ∈J

bλψλ

∥

∥

∥

∥

∥

H2

0
(Ω)

≤ C ‖b‖l2(J ) , b := {bλ}λ∈J ∈ l2 (J ) . (2)

ii) The functions are local in the sense that diam (Ωλ) ≤ C2−|λ| for all λ ∈ J ,

where Ωλ is the support of ψλ, and at a given level j the supports of only

finitely many wavelets overlap at any point x ∈ Ω.

A wavelet basis is usually formed by two types of functions: scaling functions and

wavelets. We focus on a wavelet basis recently constructed in [5] and we briefly

review the construction. Let φ be a cubic B-spline defined on knots [0, 1, 2, 3, 4] and
φb be a cubic B-spline defined on knots [0, 0, 1, 2, 3]. The graphs of the functions φ
and φb are displayed in Figure 1. For j ∈ N and x ∈ [0, 1] we set

φj,k (x) = 2j/2φ(2jx− k), k = 2, . . . 2j − 2, (3)

φj,1 (x) = 2j/2φb(2
jx), φj,2j−1 (x) = 2j/2φb(2

j(1− x)).

We define a wavelet ψ as

ψ(x) = −
1

2
φ(2x) + φ(2x− 1)−

1

2
φ(2x− 2). (4)

Then ψ has two vanishing wavelet moments, i.e.

∫

∞

−∞

xkψ(x)dx = 0, k = 0, 1. (5)
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Figure 1: Scaling functions φ and φb and wavelets ψ and ψb.

There are several choices for the definition of boundary wavelet. We choose a wavelet

with the shortest possible support and the first wavelet moment vanishing:

ψb(x) = φb(2x)− 0.45φ(2x). (6)

The graphs of the functions ψ and ψb are displayed in Figure 1. The inner wavelets

correspond to the construction of a wavelet basis for the space L2 (R) in [7].

For j ∈ N and x ∈ [0, 1] we define

ψj,k(x) = 2j/2ψ(2jx− k + 2), k = 2, ..., 2j − 1, (7)

ψj,1(x) = 2j/2ψb(2
jx), ψj,2j(x) = 2j/2ψb(2

j(1− x)).

We denote

Φj =
{

φj,k/ |φj,k|H2

0
(0,1) , k = 1, . . . , 2j − 1

}

, (8)

Ψj =
{

ψj,k/ |ψj,k|H2

0
(0,1) , k = 1, . . . , 2j

}

.

Then the sets

Ψs = Φ2 ∪

1+s
⋃

j=2

Ψj and Ψ = Φ2 ∪

∞

⋃

j=2

Ψj (9)

are a multi-scale wavelet basis and a wavelet basis of the space H2
0 (0, 1), respectively.

We use u⊗ v to denote the tensor product of functions u and v, i.e. u⊗ v (x1, x2) =
u (x1) v (x2). We set

Fj =
{

φj,k ⊗ φj,l / |φj,k ⊗ φj,l|H2

0
(Ω) , k, l = 1, . . . , 2j − 1

}

G1
j =

{

φj,k ⊗ ψj,l / |φj,k ⊗ ψj,l|H2

0
(Ω) , k = 1, . . . , 2j − 1, l = 1, . . . 2j

}

G2
j =

{

ψj,k ⊗ φj,l / |ψj,k ⊗ φj,l|H2

0
(Ω) , k = 1, . . . , 2j, l = 1, . . . 2j − 1

}

G3
j =

{

ψj,k ⊗ ψj,l / |ψj,k ⊗ ψj,l|H2

0
(Ω) , k, l = 1, . . . , 2j

}
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where Ω = [0, 1]2. A wavelet basis and a multi-scale wavelet basis of the space H2
0 (Ω)

are defined as

Ψ2D
s = F2 ∪

1+s
⋃

j=2

(

G1
j ∪G

2
j ∪G

3
j

)

, Ψ2D = F2 ∪
∞

⋃

j=2

(

G1
j ∪G

2
j ∪G

3
j

)

. (10)

3. Condition numbers of stiffness matrices

In this section, we compare the condition numbers of the stiffness matrices for

the biharmonic problem in two dimensions for different wavelet bases. We consider

the biharmonic equation

∆2u = f on Ω = (0, 1)d , u =
∂u

∂n
= 0 on ∂Ω. (11)

Let 〈·, ·〉 denote the standard L2(Ω)–inner product and Ψd be a wavelet basis of

H2
0 (Ω). The variational formulation is Au = f , where A =

〈

∆Ψd,∆Ψd
〉

, u = uTΨd,

and f =
〈

f,Ψd
〉

. It is known that then condA ≤ C <∞. Since A is symmetric and

positive definite, we have also

condAs ≤ C, where As =
〈

∆Ψd
s ,∆Ψd

s

〉

(12)

and Ψd
s is a multiscale wavelet basis with s levels of wavelets. The condition numbers

of the stiffness matrices As are shown in Table 1. A construction by Jia and Zhao

from [8] is denoted as JZ11, a construction from [4] is denoted as CF12, a construction

of multiwavelet basis from [10] is denoted as S09 and a wavelet basis defined in

Section 2 is denoted as new.

s N JZ11 N CF12 N S09 N new

1D

1 15 45.9 17 61.2 30 472.0 7 3.5

5 255 45.9 257 66.6 510 640.8 127 4.1

9 4095 45.9 4097 66.7 8190 731.4 2047 4.1

2D

1 225 34.0 289 128.1 900 484.4 49 8.5

2 961 34.9 1089 141.3 3844 583.4 225 14.3

3 3969 35.1 4225 212.0 15876 626.9 961 17.5

4 16129 35.3 16641 257.6 64516 653.5 3969 18.2

5 65025 35.5 66049 281.2 260100 673.2 16129 18.4

6 261121 35.8 263169 297.2 1044484 689.4 65025 18.6

Table 1: The condition numbers of the stiffness matrices As of the size N × N
corresponding to multi-scale wavelet bases with s levels of wavelets.
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Figure 2: The convergence history for an adaptive wavelet scheme with various

wavelet bases.

4. Numerical example

We compare the quantitative behaviour of the adaptive wavelet method with

a basis constructed in this paper and a cubic spline-wavelet basis from [4]. In [4] the

comparison with other wavelet bases is already done. We consider the equation (11)

with a solution u given by

u (x, y) = v (x) v (y) , v (x) = x2
(

1− e12x−12
)2
. (13)

The solution exhibits a sharp gradient near the point [1, 1]. We solve the problem

by the method designed in [6] with the approximate multiplication of the stiffness

matrix with a vector proposed in [2]. The convergence history is shown in Figure 2.

In our experiments, the convergence rate, i.e. the slope of the curve, is similar for

both bases. However, they significantly differ in the number of basis functions and

number of iterations needed to resolve the problem with desired accuracy.

5. Conclusion

We have shown that a wavelet basis from [5] has a short support and the condi-

tion number of the corresponding stiffness matrix is smaller than for any other cubic

spline wavelet basis adapted to the second-order homogeneous Dirichlet boundary

conditions known from literature. It was shown in [8] that Galerkin wavelet method

with the wavelet basis from [8] has superb convergence. We have shown that our

basis has similar quantitative properties as basis constructed by Jia and Zhao and

additionally wavelets have some vanishing wavelet moments. Therefore, unlike basis

by Jia and Zhao our basis can be used in adaptive wavelet methods. We implemented

adaptive wavelet method with our basis and we have shown that its convergence is

improved. However, our basis does not have local duals, therefore in some applica-

tions bases from [4, 10] are more appropriate. Furthermore, it should be shown that

our basis is indeed a wavelet basis, i.e. that a Riesz basis property (2) is satisfied.

The proof and other details can be found in [5].
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Abstract

We propose a new numerical scheme based on the finite volumes to simulate the

urethra flow based on hyperbolic balance law. Our approach is based on the Riemann

solver designed for the augmented quasilinear homogeneous formulation. The scheme

has general semidiscrete wave–propagation form and can be extended to arbitrary

high order accuracy. The first goal is to construct the scheme, which is well balanced,

i.e. maintains not only some special steady states but all steady states which can

occur. The second goal is to use this scheme as the component of the complex model

of the urinary tract including chemical reactions and contraction of the bladder.

1. Introduction

The voiding is a very complex process. It consists of the transfer of information

about the state of the bladder filling in to the spinal cord. Next part is the sending

of the action potentials to the smooth muscle cells of the bladder. Even this process

is not simple and includes the spreading of the action potential along the nerve axon

and the transmission of the mediator (Ach - acetylcholine) in the synapse. The action

potential starts the process of the smooth muscle contraction.

The sliding between actin and myosin causing the change of the form (length) of

the muscle cell and its stiffness can be observed as a kind of growth and remodeling.

This approach described e.g. in [7] is used in this model. To be able to describe the

very complex processes in the SMC in the efficient form it is necessary to use the

irreversible thermodynamics. This approach was described in [8].
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2. Bladder contraction

The whole model of the bladder contraction is described in [6]. It consists of the

following parts:

• Model of the time evolution of the Ca2+ concentration. The Ca2+ intracellular

concentration is the main control parameter for the next processes and finally

for the smooth muscle contraction. Its increase depends on the flux Jagonist of

the mediator (in this case acetylcholine) via the nerve synapse.

dc

dt
= JIP3 − JV OCC + JNa/Ca − JSRuptake + JCICR − Jextrusion + Jleak

+Jstretch

ds

dt
= JSRuptake − JCICR − Jleak

dv

dt
= γ(−JNa/K − JCl − 2JV OCC − JNa/Ca − JK − Jstretch) (1)

dw

dt
= λKactivate

dI

dt
= Jagonist − Jdegrad,

where the unknown functions represents: c = c(t) calcium concentration in

cytoplasm, s = s(t) calcium concentration in ER/SR, v = v(t) membrane

tension, w = w(t) probability of opening channels activated by Ca2+ and

I = I(t) IP3 sensitive reservoirs concentration in cytoplasm. For details and

complete description of the functions and parameters see [4].

• Model of the time evolution of the phosphorylation of the light myosin chain.

The muscle cell contraction is caused by the relative movement of the myosin

and actin filaments. For this it is necessary that the phosphorylation of the

mentioned light myosin chain on the heads of the myosin occurs.

dAM

dt
= k5AMp − (k7 + k6)AM ,

dAMp

dt
= k3Mp + k6AM − (k4 + k5)AMp, (2)

dMp

dt
= k1(1− AM) + (k4 − k1)AMp − (k1 + k2 + k3)Mp,

where the unknown functions represent the following: AM = AM(t) con-

nected cross-bridges, AMp = AMp(t) connected phosphorylated cross-bridges

and Mp = Mp(t) unconnected phosphorylated cross-bridges. k6 = k6(c), the
other terms ki are constant. For details and complete description of the func-

tions and parameters see [3]. Knowing this process also the time evolution of
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the ATP consumption (Jcycl) can be determined. The ATP (adenosintriphos-

phate) is the main energy source for the muscle contraction.

dY

dt
= −QQY + LJcycl, (3)

where Y = Y (t) represents the ATP concentration, QQ is the damping param-

eter and L is the constant.

• Model of the own contraction based on the GRT and the irreversible thermo-

dynamics. The growth and remodelling theory [2] together with the laws of

irreversible thermodynamics with internal variables was applied in [8] to de-

scribe the mechano-chemical coupling of the smooth muscle cell contraction.

The product of the chemical reaction affinity (the ATP hydrolysis) with its

rate plays an important role in the discussed model. Further it can be as-

sumed that the rate of the ATP hydrolysis depends on the ATP consumption.

The corresponding equations in the non-dimensional form are following:

ẋ = k1 [τ − z(x− 1)] ,

ẏ =
y

k2

[

xτ −
1

2
z(x − 1)2 + C ′

]

, (4)

ż = sgn(m) ·
[

r −
1

2
z(x − 1)2

]

,

where x = l
lr
, y = lr

l0
, l0 is the initial length of the muscle fibre, lr its length

after stimulation when the fibre is unloaded (s. c. resting length), l the actual
length ( when the contraction is isometric this is the input value), τ the stress

and k is the fibre stiffness, m and r are constants. The non-dimensional values

are labeled with the single quote mark. The others symbols are the parameters.

The dependence of the single parts of the bladder model is illustrated at the

figure 1.

3. Bladder and voiding model

To model the contraction of the bladder during the voiding process we will use

the very simple model according [5]. The bladder is modelled as a hollow sphere with

the output corresponding to the input into urethra. For the pressure in the bladder

the following formula is introduced in [5]

p =
Vsh

3V
· τ, τ =

F

S
, (5)

where Vsh is the volume of the wall, V the inner volume, S the inner surface, F the

force in the muscle cell and τ stress in the muscle fibre, which can be derived as

τ =

−q

3κ(x·y)2
+
[

k1zy(x− 1) + zyx

2k2
(x− 1)2 − xy

k2
C ′

]

k1y +
x2y

k2

. (6)

This will be putted into the equations for the isotonic contraction.
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Figure 1: Unknown functions and the dependence of the bladder model parts.

4. Urethra flow

We now briefly introduce a problem describing fluid flow through the elastic tube.

In the case of the male urethra, the system based on model in [9] has the following

form

at + qx = 0,

qt +
(

q2

a
+ a2

2ρβ

)

x
= a

ρ

(

a0
β

)

x
+ a2

2ρβ2βx −
q2

4a2

√

π
a
λ(Re),

(7)

where a = a(x, t) is the unknown cross-section area, q = q(x, t) is the unknown

flow rate (we also denote v = v(x, t) as the fluid velocity, v = q

a
), ρ is the fluid

density, a0 = a0(x) is the cross-section of the tube under no pressure, β = β(x, t) is
the coefficient describing tube compliance and λ(Re) is the Mooney-Darcy friction

factor (λ(Re) = 64/Re for laminar flow). Re is the Reynolds number. This model

contains constitutive relation between the pressure and the cross section of the tube

p =
a− a0

β
+ pe, (8)

where pe is surrounding pressure.

Presented system (7) can be written in the compact matrix form

ut + [f(u, x)]x = ψ(u, x), (9)

with u(x, t) being the vector of conserved quantities, f(u, x) the flux function and

ψ(u, x) the source term. This relation represents the balance laws. For the following

consideration, we reformulate this problem to the nonconservative form.
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4.1. Decompositions based on augmented system

The numerical scheme for solving problems (9) can be written in fluctuation form

∂Uj

∂t
= −

1

∆x
[A−(U−

j+1/2,U
+
j+1/2) +A(U−

j+1/2,U
+
j−1/2) +A+(U−

j−1/2,U
+
j−1/2)], (10)

where A±(U−

j+1/2,U
+
j+1/2) are so called fluctuations. They can be defined by the

sum of waves moving to the right or to the left. In what follows, we use the nota-

tion U+
j+1/2 and U−

j+1/2 for the approximations of limit values at the points xj+1/2.

The most common choices are based on the minmod function or ENO and WENO

techniques [10].

The our approach is based on the extension of the system (7) by other equations.

The advantage of this step is in the conversion of the nonhomogeneous system to

the homogeneous quasilinear one. The augmented system can be written in the

nonconservative form
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0 0 0 0 0



































a
q
φ
a0
β

β

















x

= 0, (11)

briefly wt +B(w)wx = 0, where φ = av2 + a2

2ρβ
.

We have five linearly independent eigenvectors. The approximation is chosen

to be able to prove the consistency and provide the stability of the algorithm. In

some special cases this scheme is conservative and we can guarantee the positive

semidefiniteness, but only under the additional assumptions (see [1]).

The fluctuations are then defined by

A−(U−

j+1/2,U
+
j+1/2) =

[

0 1 0 0 1

0 1 0 0 1

]

·
m
∑

p=1,sp,n
j+1/2

<0

γp

j+1/2r
p

j+1/2,

A+(U−

j+1/2,U
+
j+1/2) =

[

0 1 0 0 1

0 1 0 0 1

]

·
m
∑

p=1,sp,n
j+1/2

>0

γp

j+1/2r
p

j+1/2,

A(U+
j−1/2,U

−

j+1/2) = f(U−

j+1/2)− f(U+
j−1/2)−Ψ(U−

j+1/2,U
+
j−1/2),

(12)

where Ψ(U−

j+1/2,U
+
j−1/2) is a suitable approximation of the source term and r

p

j+1/2

are suitable approximations of the eigenvectors of Jacobi matrix f ′(u).

4.2. Steady states

It is very important to choose such approximation which conserves steady states,

if these states occur exactly. Steady states mean ut = 0, therefore [f(u)]x = ψ(u, x).
The steady state for the augmented system means B(w)wx = 0, therefore wx is

a linear combination of the eigenvectors corresponding to the zero eigenvalues. The
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discrete form of the vector ∆w corresponds to the certain approximation of these

eigenvectors. It can be shown that

∆

















A
Q
Φ
a0
β

β

















=



















Ā
ρ

1

λ1λ2

0
Ā
ρ

˜λ1λ2

λ1λ2

1

0



















∆

(

a0
β

)

+



















Ā2

ρβj+1βj

1

λ1λ2

0
Ā2

ρβj+1βj

˜λ1λ2

λ1λ2
− Ã2

2ρβj+1βj

0

1



















∆β, (13)

where for j-th cell ∆(.) = (.)j+1 − (.)j, Ā =
Aj+Aj+1

2
, β̄ =

βj+βj+1

2
, Ã2 =

A2

j+A2

j+1

2
,

Ṽ 2 = |VjVj+1|, V̄
2 =

(

Vj+Vj+1

2

)2
, ˜λ1λ2 = −Ṽ 2 + Āβ̄

ρβj+1βj
, and λ1λ2 = −V̄ 2 + Āβ̄

ρβj+1βj
.

We use vectors on the RHS of (13) as consistent approximation of the fourth and

fifth eigenvectors of the matrix B(w). The fluctuations (12) are defined with these

vectors and the approximation of the source term is defined by the third line in (13)

Ψ(U−

j+1/2,U
+
j−1/2) =

Ā

ρ

˜λ1λ2

λ1λ2
∆

(

a0
β

)

+
Ā2

ρβj+1βj

˜λ1λ2

λ1λ2
−

Ã2

2ρβj+1βj

∆β, (14)

where the values (.)j and (.)j+1 should be replaced by their appropriate reconstructed

values (.)+j−1/2 and (.)−j+1/2.

5. Complex model of the bladder and the urethra

The whole voiding model consists of the detrusor smooth muscle cell model and

the model of the urethra flow. It is described by the system of following ordinary

differential equations:

• 12 equations describing the bladder model and the detrusor contraction during

voiding - the systems (1), (2) and (4).

• 2J equations of urethra flow, where J is the number of finite volumes which

divide the urethra region

The connection between the detrusor model and urethra flow is implemented by the

relation (6) and the constitutive relation (8). The outflow of the bladder is the same

as the flow rate in the first finite volume of the urethra region. So the pressure of

the bladder is dependent on the flow rate in the tube (6). The cross-section in the

first finite volume of the urethra region is then given by the constitutive relation (8).

From the view of urethra flow, the inflow boundary condition consists of the given

cross-section and extrapolation of the flow rate from the urethra region.

6. Numerical experiment including the complex model of lower urinary

tract

Now we present numerical experiment based on the system of differential equa-

tions described detrusor smooth muscle cell model (12 equations) and urethral flow
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Figure 2: Time evolution of the quantities at the bladder neck.

(30 equations). The parameters used in this experiment are the same as in [6]. The

figures 2 illustrate time evolution of the quantities at the bladder neck.

For the simplicity the precious modelling of the synapse is neglected and the

mediator flux Jagonist is chosen - see Fig. 2. The IC units are used although in the

medical paper are used for intravesical pressure cm H2O ( 1 cm H2O = 0.1 kPa) and

for the outflow ml/s. The concentration is measured in µM where M = mol/l.

7. Conclusion

We presented the complex model of the lower part of the urinary tract. A simple

bladder model and the detrusor contraction model were developed during voiding

together with the detailed model of urethra flow. The urethra flow was described by

the high-resolution positive semidefiniteness method, which preserves general steady

states. For the practical application the identification of the parameters is necessary.
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Abstract

In signal and image processing as well as in numerical solution of differential equa-

tions, wavelets with short support and with vanishing moments are important because

they have good approximation properties and enable fast algorithms. A B-spline of

order m is a spline function that has minimal support among all compactly sup-

ported refinable functions with respect to a given smoothness. And recently, B. Han

and Z. Shen constructed Riesz wavelet bases of L2(R) with m vanishing moments

based on B-spline of order m. In our contribution, we present an adaptation of their

quadratic spline-wavelets to the interval [0, 1] which preserves vanishing moments.

1. Introduction

Wavelets are a widely accepted tool in signal and image processing as well as in

numerical solution of operator equations. In this area, methods based on wavelets are

successfully used for preconditioning of large systems of linear equations arising from

discretization of elliptic partial differential equations, sparse representations of some

types of operators and adaptive solving of operator equations. The performance of

these methods strongly depends on the choice of a wavelet basis, in particular on its

condition number.

Wavelet bases on a general domain are usually constructed in the following way:

Wavelets on the real line are adapted to the interval and then by tensor product

technique to the n-dimensional cube. Finally by splitting the domain into sub-

domains which are images of (0, 1)n under appropriate parametric mappings one can

obtain wavelet bases on a fairly general domain. Thus, the properties of wavelet

basis on the interval are important for the properties of resulting bases on general

domains.

Here, we focus on quadratic spline-wavelets and we construct well-conditioned

interval spline-wavelet bases. From the viewpoint of numerical stability, ideal wavelet

bases are orthogonal ones. However, they are usually avoided mainly due to the lack

of smoothness and their large support. Natural generalization of orthogonal wavelets

are biorthogonal wavelets, but their construction and implementation is relatively
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complicated and wavelets usually have larger support than scaling functions. For

more details see for instance [1]. In recent years, there appeared some interesting

constructions of biorthogonal wavelets with globally supported dual wavelets [5, 7].

This seems not to cause any problem in numerical solution of linear PDEs because

dual functions are not directly used. And recently, B. Han and Z. Shen [6] constructed

a Riesz wavelet bases of L2(R) with m vanishing moments based on B-spline of

order m. In our contribution, we present an adaptation of quadratic spline-wavelets

proposed in [6] to the interval [0, 1] which preserves vanishing moments and compare

their properties with quadratic spline wavelets constructed in [1].

2. B-splines

We use a scaling basis based on quadratic B-splines employed for example

in [1, 2], because they are well-conditioned and can be easily adapted to the bounded

interval by employing multiple knots at the endpoints. Let N be the desired order of

polynomial exactness of scaling basis, j ∈ N0 and let tj =
(

tjk
)2j+N−1

k=−N+1
be a Schoen-

berg sequence of knots defined by

tjk := 0, k = −N + 1, . . . , 0,

tjk :=
k

2j
, k = 1, . . . , 2j − 1,

tjk := 1, k = 2j, . . . , 2j +N − 1.

The corresponding B-splines of order N are then defined by

Bj
k,N (x) :=

(

tjk+N − tjk
) [

tjk, . . . , t
j
k+N

]

(t− x)N−1
+ , x ∈ [0, 1],

where (x)+ := max {0, x}. The symbol [tk, . . . tk+N ] f(t) is the N -th divided differ-

ence of f which is recursively defined as

[tk, . . . , tk+N ] f(t) =
[tk+1, . . . , tk+N ] f(t)− [tk, . . . , tk+N−1] f(t)

tk+N − tk
if tk 6= tk+N ,

=
f (N) (tk)

N !
if tk = tk+N ,

with [tk] f(t) = f (tk). Then, we define the set Φj = {φj,k, k = −N + 1, . . . , 2j − 1}
of scaling functions where

φj,k = 2j/2Bj
k,N , k = −N + 1, . . . , 2j − 1, j ≥ 0.

Thus, there are 2j − N + 1 inner scaling functions and N − 1 functions at each

boundary. The functions φj,−N+1 and φj,2j−1 are the only functions which do not

vanish at the boundaries. Therefore, scaling bases satisfying homogeneous Dirichlet

boundary conditions are given by

ΦB
j =

{

φj,k, k = −N + 2, . . . , 2j − 2
}

.
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Inner scaling functions are translations and dilations of one function φ correspond-

ing to the primal scaling function constructed by Cohen, Daubechies and Feauveau

in [4]. In the case of a quadratic spline-wavelet basis, there is only one boundary

scaling function at each boundary. Specifically, the quadratic spline function φ(x) is
defined by

φ(x) =















x2

2
x ∈ [0, 1],

−x2 + 3x− 3
2

x ∈ [1, 2],
x2

2
− 3x+ 9

2
x ∈ [2, 3],

0 otherwise.

The left boundary function φB(x) is defined by

φB(x) =







−3x2

2
+ 2x x ∈ [0, 1],

x2

2
− 2x+ 2 x ∈ [1, 2],

0 otherwise,

and the corresponding right boundary function is symmetrical with respect to the

point 3/2. Above scaling functions satisfy the following refinement equations:

φ(x) =
1

4
φ(2x) +

3

4
φ(2x− 1) +

3

4
φ(2x− 2) +

1

2
φ(2x− 3),

and

φB(x) =
1

2
φB(2x) +

3

4
φ(2x) +

1

4
φ(2x− 1),

respectively.

3. Wavelets

In many applications, it is important not only to have wavelets with short sup-

port, with vanishing moments but also with a small condition number. Such wavelets

should be as close as possible to some orthonormal wavelets or tight frames, for

a given order of regularity or vanishing moments. However, construction of opti-

mally conditioned wavelet bases is still an open question. To construct a compactly

supported wavelet, one usually starts with a compactly supported refinable func-

tion φ with stable shifts. Recall that the shifts of a function φ are stable if the

sequence formed by whole-number shifts of the function φ is a Riesz sequence. Then

a compactly supported wavelet is obtained by selecting some finite linear combination

of these shifts. For further details on this concept, we refer to [3, 8].

While compactly supported refinable functions with stable shifts can be con-

structed relatively easily, the construction of compactly supported wavelets generated

by B-splines is not straightforward. In [6], Riesz wavelet bases of L2(R) with m van-

ishing moments based on B-spline of order m have been proposed. Their wavelets

are the shortest supported wavelets of regularity m−1/2 with m vanishing moments.
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Figure 1: The quadratic wavelet proposed by B. Han and Z. Shen.

The quadratic spline-wavelet constructed by B. Han and Z. Shen is then given

by

ψ(x) = −
1

4
φ (2x) +

3

4
φ (2x− 1)−

3

4
φ (2x− 2) +

1

4
φ (2x− 3).

Its graph is depicted in Figure 1. Now, we would like to adapt it to homogeneous

Dirichlet boundary conditions and to keep the number of vanishing moments. First

of all, it is not possible to construct boundary wavelets with the same number of

vanishing moments as inner wavelets have, and with the same length of support as

boundary scaling functions have. They should be supported at least in the interval

[0, 5/2].We construct here a boundary wavelet prescribing three vanishing moments,

the support in the interval [0, 5/2], homogeneous Dirichlet boundary conditions and

finally, it should be from the space spanned by {φB(2x), φ(2x − k) : k ∈ N0}. The
arising wavelet is then given by these conditions up to multiplication by a constant

and is determined by

ψB(x) = −
5

2
φB (2x) +

47

12
φ (2x)−

13

4
φ (2x− 1) + φ (2x− 2).

Figure 2: The constructed boundary wavelet.
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4. Properties of constructed basis

In this section, we compare selected properties of wavelets introduced in the

previous section with wavelets proposed in [1]. We will look at the condition number

and the number of nonzero elements for the stiffness matrix corresponding to the

equation u′′ = f with the Dirichlet boundary conditions u(0) = u(1) = 0. We use

here also the standard wavelet preconditioning consisting in normalizing all basis

function with respect to the arising bilinear form. Further, we solve the above

problem corresponding to the exact solution u = x(1−e50x−50) which exhibits a steep

gradient near the point 1. Results are summarized in Table 1. NZ is the number of

nonzero elements in stiffness matrices, COND represents the condition number of

diagonally preconditioned stiffness matrices. Achieved approximation error was the

same for both bases.

The proposed basis CF

n ||un − u||L2
NZ COND NZ COND

8 5.9e-02 58 8.9 - -

16 1.6e-02 200 10.1 174 12.2

32 2.6e-03 530 10.6 622 12.6

64 3.1e-04 1268 10.8 1822 12.7

128 3.7e-05 2846 10.9 4510 12.8

256 4.5e-06 6128 10.9 10254 12.9

512 5.6e-07 12842 10.9 22190 12.9

1024 7.0e-08 26444 11.0 46590 12.9

2048 8.8e-09 53846 11.0 95998 12.9

4096 1.1e-09 108885 11.0 195502 12.9

Table 1: Obtained numerical results.

5. Conclusion

In this contribution, we proposed new wavelets based on quadratic splines. Due

to the shorter support of proposed wavelets, stiffness matrices are sparser than for

any known quadratic basis with compactly supported dual wavelets. Moreover, they

are slightly better conditioned. Our future aim is to prove that the proposed basis is

a Riesz basis and to construct higher order spline-wavelet bases with shorter support

than any biorthogonal bases with compactly supported dual wavelets have.
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Abstract

Different choices of the averaging operator within the BDDC method are compared

on a series of 2D experiments. Subdomains with irregular interface and with jumps

in material coefficients are included into the study. Two new approaches are studied

along three standard choices. No approach is shown to be universally superior to

others, and the resulting recommendation is that an actual method should be chosen

based on properties of the problem.

1. Introduction

In many domain decomposition methods, an important role is played by the

operator of averaging of a discontinuous function at the interface between adjacent

subdomains. Two standard approaches commonly used in literature are: (i) arith-

metic average, based simply on counting number of subdomains at an interface

unknown, and (ii) weighted average, with weights derived from diagonal stiffness

of subdomain Schur complements with respect to the interface. Its simplification

presents approximation of the diagonal of the Schur complement by the diagonal of

the original matrix, also known as the stiffness scaling [3]. The applicability of the

so called ρ-scaling (see e.g. [3] or [4] for theoretical analysis) is limited to the case of

material coefficients constant on each subdomain, which is not preserved in our ex-

amples. It also relies on knowledge of coefficients often not available in the solver. In

the case of homogeneous material, it simplifies to arithmetic average. Consequently,

it is not analyzed separately in this study.

In this paper, we study performance of these standard choices on a series of two-

dimensional numerical experiments with the Poisson equation. These were selected

to test the performance on regular and irregular subdomains, and in presence of

jumps in material coefficients with different alignment with respect to interface. The
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Balancing Domain Decomposition by Constrains (BDDC) method [2] is used for

this study. In addition to the standard approaches, two new methods are included –

averaging based on a unit jump on the interface described in [1], and a new approach

based on a unit load applied on boundary of a subdomain. These approaches are

shown to be competitive or even preferable in certain situations.

2. Reduction of the problem to the interface

Consider a boundary value problem with a self-adjoint operator defined on do-

main Ω ⊂ R
2 or R

3. If we discretize the problem by means of the standard finite

element method (FEM), we arrive at the solution of a system of linear equations in

the matrix form

Ku = f , (1)

where K is a large, sparse, symmetric positive definite (SPD) matrix and f is a vector

of the right-hand side.

Let us decompose domain Ω intoN non-overlapping subdomains Ωi, i = 1, . . . , N .

Unknowns common to at least two subdomains are called interface unknowns and

the union of all interface unknowns form the interface. Remaining unknowns belong

to subdomain interiors.

The first step used in many domain decomposition methods including BDDC is

the reduction of the problem to the interface. Without loss of generality, suppose that

unknowns are ordered so that interior unknowns form the first part and the interface

unknowns form the second part of the solution vector, i.e. u =
[

uo û
]T
, where

uo stands for all interior unknowns and û for unknowns at the interface. System (1)

can now be formally rewritten to the block form

[

Koo Kor

Kro Krr

] [

uo

û

]

=

[

fo
̂f

]

. (2)

The hat symbol (̂) is used to denote global interface quantities. If we suppose the

interior unknowns are ordered subdomain after subdomain, then the submatrix Koo

is block diagonal with each diagonal block corresponding to one subdomain.

After eliminating all the interior unknowns from (2), we arrive at the Schur

complement problem for the interface unknowns

̂S û = ĝ, (3)

where ̂S = Krr −KroK
−1
oo Kor is the Schur complement of (2) with respect to inter-

face and ĝ = ̂f −KroK
−1
oo fo is sometimes called condensed right-hand side. Interior

unknowns uo are determined by interface unknowns û via the system of equations

Koouo = fo − Korû, which represents N independent subdomain problems with

Dirichlet boundary condition prescribed on the interface and can be solved in par-

allel. The main objective represents the solution of problem (3), which is solved by

the preconditioned conjugate gradient method (PCG).
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3. Primal DD methods and BDDC

Primal DD methods can be viewed as preconditioners for problem (3), when it is

solved by the PCG method. In every iteration of the PCG method, a preconditioned

residual Mr̂ is computed, where r̂ is the residual. The action of M is realized by one

step of the DD method.

The main idea of the primal DD substructuring methods of Neumann-Neumann

type can be expressed as splitting the given residual of the PCG method to sub-

domains, solving subdomain problems and projecting the result back to the global

domain. The primal preconditioner can be written as

M = ES−1ET , (4)

where operator ET represents splitting of the residual to subdomains, S−1 stands for

solution of subdomain problems, and E represents projection of subdomain solutions

back to the global problem by some averaging [5]. In the case some subdomains are

‘floating’, i.e. do not touch a part of boundary with Dirichlet boundary conditions,

S is only positive semidefinite, and a generalized inverse S+ may be needed in (4).

The condition number κ of the preconditioned operator M ̂S is bounded by

κ ≤ ||RE||2S , (5)

where operator R splits the global interface into subdomains and the energetic norm

on the right-hand side is defined by the scalar product as ||u||2S = 〈Su, u〉. The

relationship (5) was proved in [5] assuming that ER = I, which means that if the

problem is split into subdomains and then projected back to the whole domain, the

original problem is obtained.

If we used independent subdomain problems only (no continuity conditions across

the interface), the operator S would be expressed by a block diagonal matrix S with

diagonal blocks representing local Schur complements on subdomains. Relationship

between global and local problems can be expressed in matrix form as ̂S = RTSR.

The main idea of the BDDC method ([2]) is to introduce a global coarse problem

in order to achieve better preconditioning and to fix ‘floating subdomains’ by making

their local Schur complements invertible. The matrix S is then positive definite, but it

is not block diagonal any more, R now represents splitting of the global interface into

subdomains (outside of the coarse unknowns), and ET distributes residual among

neighbouring subdomains only in those interface unknowns which are not coarse.

Thus in BDDC, only part of the global residual is split into subdomains; residual at

the coarse unknowns is left undivided – it is processed by the global coarse problem.

4. Choice of the averaging operator E

Three standard choices of the averaging operator E recommended already in [2]

are (i) the arithmetic average, or weighted average with weights at interface nodes

given (ii) by the ratio of the corresponding diagonal entries of the local and global
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Schur complement, or (iii) by the ratio of the corresponding diagonal entries of the

local and global system matrix K. These choices are denoted here as aa (arithmetic

average), ds (d iagonal of Schur complement) and dk (d iagonal of K), respectively.

Method dk can be regarded as an approximation of method ds, if Schur complements

are not computed explicitly.

We try to improve convergence of the BDDC method by choosing some more

efficient weights. One of the proposed methods is to choose operator E so that it

approximately minimizes the energy norm of the projection RE from estimate (5) for

some suitable test vectors representing jumps across the interface. The method, de-

scribed in more detail in [1], is denoted here as uj (unit jumps). Here we numerically

test just one choice of the test vectors: for every common face of two subdomains,

one (local) test vector consisting of ones in the nodes belonging to the face and zeros

elsewhere was chosen, corresponding to unit jump. Such choice results in the same

weight for every node at the whole face. This, in a sense, makes this method similar

to arithmetic average, where also just one weight is used for every node at the face

(equal to 0.5).

The second proposed method, denoted as ul (unit loads), tries to exploit infor-

mation of different values of local solution at corresponding interface nodes caused

by constant (unit) load at the local interface.

Computation of the weights at interface nodes

For the sake of clarity, formulas are presented for the 2D case, where an interface

node is either coarse (so there is no division into subdomains), or it belongs to

a face (i.e. to exactly two adjacent subdomains). We also assume one degree of

freedom per node, so that numbering of nodes and degrees of freedom coincide. It is

straightforward to generalize these methods for 3D cases and more degrees of freedom

at a node.

Notation for interface nodes:

j – number of the node in numbering with regard to interface

i – global number of the j-th node on interface

wm
j – weight at the j-th node at the interface corresponding to the m-th subdomain

Formulas for individual methods:

aa : wm
j =

1
2

ds : wm
j =

smpp
sjj

dk : wm
j =

kmqq
kii

uj : wm
j =

d
T
S
m
d

dT ̂Sd

ul : wm
j =

v
m(j)

vm(j)+vn(j)

where:
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sjj – diagonal entry of the global Schur complement ̂S

smpp – corresponding diagonal entry of the local Schur complement for the m-th sub-

domain; p is a local number (at the interface of the m-th subdomain) of the j-th
node at the (global) interface

kii – diagonal entry of the (global) system matrix K

km
qq – corresponding diagonal entry of the local matrix for the m-th subdomain; q is

a local number (at the m-th subdomain) of the i-th node (in global numbering)

d – test vector equal to ones at the face which the j-th node belongs to and zeros

otherwise (representing jump at that face)

Sm – local Schur complement for the m-th subdomain

vm, vn – vectors of solution of the local (subdomain) Schur complement problems

with zero values at coarse nodes and the right-hand side equal to one at every inter-

face node that is not coarse, at the m-th and n-th subdomain respectively, where

the n-th and m-th subdomain have common face which the j-th node belongs to.

5. Numerical results

The 2D problem of stationary heat conduction (Poisson equation) on a rectangu-

lar domain was used for testing. It was discretized by 59 x 59 bilinear finite elements

of the same size and shape.

We compared two different divisions into subdomains: rectangular subdomains

(Figure 1 left), as the usual choice for rectangular domain, and irregular subdomains

(Figure 1 right), typical for domains with irregular shape or when some tool for

automatic division into subdomains is used. For the coarse space, just the cross-

points were used. Both homogeneous and nonhomogeneous materials were tested.

The nonhomogenity was given by a 1:100 jump in conductivity. Nine different space

arrangement of the jump was used, denoted as problems p1–p9 and depicted in

Figure 2 (white color represents the conductivity of 1 and black color represents the

conductivity of 100).

Five different methods of weights for averaging between the subdomains in the

BDDC method were compared, three standard ones (aa, ds and dk) and two new

(uj, ul), all described in Section 4.

Number of PCG iterations for different methods are summarised for rectangular

subdomains in Table 1 and for irregular ones in Table 2. The problem p0 represents

problem with constant conductivity on the whole domain, the problems p1–p9 are

problems with different locations of jumps in conductivity depicted in Figure 2. As

a convergence criterion, norm of the residual less than 10−6 was used.

Condition numbers of the preconditioned systems are presented in Tables 3 and 4,

where the row k0 is added with the condition number of Schur complement system

without preconditioning. Condition numbers were estimated using ratio of the largest

and the smallest eigenvalue computed by Matlab function eig.
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p0 p1 p2 p3 p4 p5 p6 p7 p8 p9

aa 14 45 14 48 22 22 43 42 46 42

uj 14 6 14 60 21 23 49 37 49 29

ds 14 6 14 28 23 22 30 26 59 16

dk 14 6 14 28 22 22 31 25 59 16

ul 14 6 15 39 23 23 38 35 60 16

Table 1: Number of iterations of PCG, rectangular subdomains.

p0 p1 p2 p3 p4 p5 p6 p7 p8 p9

aa 13 51 46 65 35 52 58 54 68 83

uj 14 42 41 77 49 72 55 43 70 14

ds 19 23 28 37 37 55 30 33 50 16

dk 20 23 29 37 37 57 32 34 56 16

ul 15 21 24 54 46 64 47 34 64 15

Table 2: Number of iterations of PCG, irregular subdomains.

p0 p1 p2 p3 p4 p5 p6 p7 p8 p9

k0 5e2 1e3 3e3 2e3 4e4 2e4 2e4 3e4 4e3 3e3

aa 3.71 255 3.65 83 20 33 59 61 69 83

uj 3.72 1.15 3.22 73 18 30 80 50 39 19

ds 3.71 1.15 3.61 104 20 33 50 51 153 7

dk 3.71 1.15 3.65 105 20 33 53 55 160 7

ul 3.94 1.15 3.83 46 21 33 55 58 40 8

Table 3: Condition number of the preconditioned system, rectangular subdomains.

p0 p1 p2 p3 p4 p5 p6 p7 p8 p9

k0 6e2 4e3 3e3 2e3 5e4 3e4 3e4 4e4 6e3 4e3

aa 3.26 73 62 72 50 57 82 82 77 136

uj 3.31 91 49 166 147 157 90 131 116 4

ds 8.23 22 148 79 106 172 128 123 94 6

dk 8.79 22 161 80 114 188 141 132 113 7

ul 3.49 19 34 71 109 98 99 135 82 4

Table 4: Condition number of the preconditioned system, irregular subdomains.
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Figure 1: Division into rectangular (left) and irregular (right) subdomains.
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Figure 2: Different nonhomogeneous material properties for problems p1–p9 (the first

row p1, p2, p3, the second row p4, p5, p6, the last row p7, p8, p9 ).
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Figure 3: Comparison of the first 150 eigenvalues of M ̂S for methods dk (‘◦’, dotted
line), and ul (‘×’, solid line), problem p3, regular subdomains.
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Figure 4: Comparison of the first 150 eigenvalues of M ̂S for methods dk (‘◦’, dotted
line), and ul (‘×’, solid line), problem p3, irregular subdomains.
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6. Conclusions

Our numerical results lead to several observations:

• Arithmetic average (method aa) is surprisingly robust even if jumps in coeffi-

cients of the equation occur, as long as the jumps do not exactly coincide with

the interface (for instance see problem p2, where the jumps are shifted only

one row of elements from the interface).

• Weights computed as the ratio of the corresponding diagonal entries of local

and global Schur complements can be very successfully approximated using the

original system matrix K instead of the Schur complements.

• For irregular shape of interface without jumps in coefficients (problem p0 ),

using either ds or dk method instead of arithmetic averages (aa) can lead to

worse convergence.

• Method ul seems to give promising results: it is usually better than arithmetic

average, often it is comparable or better than ds or dk, and it does not seem

to have difficulties with irregular shape of interface. However in some cases it

leads to worse convergence than all of the standard methods.

• Both proposed methods, uj and ul, lead very often to lower condition number of

the preconditioned system than all standard methods, aa, ds and dk. However,

they often give worse convergence results. The reason for this seems to be

the distribution of eigenvalues, as illustrated for problem p3 with rectangular

and irregular subdomains in Figures 3 and 4, respectively. For both cases, the

first 150 eigenvalues for methods dk (circles) and ul (crosslines) are compared.

For the first few largest eigenvalues, the values for the dk method are larger

than the values for the ul method, which leads to larger condition number (the

smallest eigenvalue is allways equal to one). However, following values for the

dk method quickly drop down and cluster around 1, and they are much lower

than the values for the ul method. As is well known, clustering of eigenvalues

is another important aspect influencing the rate of convergence of PCG.

For equation without jumps in coefficients, the method of choice seems to be the

arithmetic averaging. It can lead to very good convergence even if there are jumps

in coefficients, except the case where jumps exactly coincide with the interface or

some part of it.

If there are jumps in coefficients, the best choice is usually choosing weights as

the ratio of corresponding diagonal entries of local and global Schur complements

(method ds). As these numbers typically are not in hand, a very good substitute is

using diagonal entries of local and global original system matrices (method dk).

Interesting results are obtained by the method ul, which deserves further investi-

gation. Method uj does not lead to better convergence than the standard methods.
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Abstract

The goal of this contribution is to find the optimal finite element space for solving

a particular boundary value problem in one spatial dimension. In other words, the

optimal use of available degrees of freedom is sought after. This is done through

optimizing both the mesh and the polynomial degree of the basis functions. The

resulting combinatorial optimization problem is solved in parallel by a Matlab program

running on a cluster of multi-core personal computers.

1. Introduction

A finite element mesh is among principal factors that affect the performance of

the h-version of the finite element method (FEM). An appropriately defined mesh

or, to be more correct, a sequence of appropriately defined meshes can accelerate

the convergence of the method. Since the FEM projects the exact solution to the

mesh-dependent finite element space, the distance between the exact solution and

the finite element (FE) space determines the error, that is, the distance between the

exact solution and its FE approximation. Various techniques have been proposed to

adaptively modify FE meshes and, consequently, FE spaces in order to minimize the

error [2, 3, 10].

In the h-version of the FEM, however, the polynomials forming the basis of the

FE space either remain unchanged during the mesh modification process or only

limited increase/decrease of the polynomial degree is allowed. Typically, piecewise

linear and quadratic or even cubic functions are considered.

In the hp-version of the FEM, both mesh and polynomial degree modifications

are supported and low as well as higher order polynomials can be found together

in FE spaces, see [5, 6, 8, 11, 12]. Nevertheless, this freedom has its dark side.

Unlike the h-version of the FEM, where the FE space improvement is mediated

solely by adaptive mesh optimization, the mesh as well as the polynomial degree can

be adaptively changed in the hp-FEM and it is difficult to determine which of the

two approaches is more efficient or how to combine them to get best results. We
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refer to [1, 7, 9, 13] for various algorithms and analyses focusing on one-dimensional

boundary value problems (BVPs).

This contribution presents computational results of the optimization of FE spaces

that have a fixed dimension. The goal of the optimization is to minimize the dif-

ference between a FE solution and the exact solution of a BVP. The difference is

measured in the H1-norm. The results can (a) serve as benchmarks for the perfor-

mance of adaptive algorithms, and (b) help to evaluate the efficiency of polynomial

degree optimization and mesh optimization.

2. Optimization problem

Let u(x) = 1/(1.25 − x) and let f , a, and b be inferred to comply with the

following BVP on the interval [−1, 1]

−u′′ + u = f, (1)

u′(−1) = a, u′(1) = b. (2)

Omitting the knowledge of u, we solve (1)–(2) by the FEM: Find u
Th,p ∈ V Th,p such

that
∫ 1

−1

(

u′

Th,p
v′
Th,p

+ u
Th,pvTh,p

)

dx =

∫ 1

−1

fv
Th,p dx+ bv

Th,p(1)− av
Th,p(−1) (3)

holds for any v
Th,p ∈ V Th,p. The finite element space V Th,p is defined on the mesh Th

determined by points −1 = x0 < x1 < · · · < xm = 1. If C([−1, 1]) denotes the space

of continuous functions on [−1, 1] and Pdk([xk−1, xk]) is the space of polynomials on

[xk−1, xk] of degree dk or less, we have

V Th,p =
{

v
Th,p ∈ C([−1, 1]) : v

Th,p|[xk−1,xk]
∈ Pdk([xk−1, xk]), k = 1, . . . , m

}

.

The basis functions of V Th,p are defined via the Lobatto shape functions (LSFs;

see [12]) with their polynomial degree limited to at most 10. Let us note that each

LSF of order two and higher is a bubble function because its support comprises only

one mesh subinterval.

Various FE spaces can be designed with the same dimension N . To this end, we

introduce p = (d1, . . . , dm), m-tuples that describe the polynomial degree distribution

over the mesh intervals. By counting the LSFs inclusive of piecewise linear basis

functions, we arrive at N = d1 + · · ·+ dm + 1.

Next, let PN be the set of all polynomial degree distributions that correspond to

N -dimensional FE spaces. As an example, take N = 5 and

P5 = {(1, 1, 1, 1), (2, 1, 1), (1, 2, 1), (1, 1, 2), (2, 2), (3, 1), (1, 3), (4)},

where (1, 1, 1, 1) represents a FE space with five piecewise linear functions and three

unspecified mesh nodes between −1 and 1 (inner nodes), whereas (4) represents the

unique FE space formed by quartic polynomials on [−1, 1].
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Each p ∈ PN determines a family Mp of meshes Th that, if combined with the

polynomial degree distribution p, lead to FE spaces with the dimension N .

As already indicated, we are interested in the minimization of

Φ(p, Th) = ‖u− u
Th,p‖H1(−1,1)

where u
Th,p ∈ V Th,p solves (3). More precisely, if a fixed dimension N is given, we

search for p0 ∈ PN and T 0
h such that

Φ(p0, T 0
h ) = min

p∈PN

min
Th∈Mp

Φ(p, Th). (4)

Problem (4) was solved in the MATLABR© environment. To avoid mesh degen-

eration, a minimum distance of mesh nodes was bounded from below by a small

positive constant.

The position of mesh nodes was optimized by the MATLABR© Optimization

ToolboxTM fmincon function designed to search for local minima. Since the goal of

the inner minimization in (4) is to find a global minimum, multiple runs of fmincon

were performed on an initial uniform mesh as well as on a number of initial random

meshes.

The computational complexity of problem (4) is rapidly increasing with N . In-

deed, |PN |, the cardinality of PN , is equal to 2N−2 if N = 3, 4, . . . , 11. For N > 11,

the constraint put on the maximum polynomial degree inhibits the exponential

growth of |PN |, but not strongly. It is |P14| = 4088, for instance.

The inner minimizations are mutually independent for different p ∈ PN and were

solved in parallel on a cluster of personal computers with (up to) 200 cores.

3. Results

Let N = 14. Figure 1 (left) shows the values Φ(p, Th) where Th are uniform (non-

optimized) meshes. The numbers on the horizontal axis correspond to the position

of a particular p in the sequence of all p ∈ P14. The dependence of p on its ordinal

number cannot be given by a simple formula. Let us only say that, very roughly, the

higher the ordinal number, the higher the polynomial degrees in p.
We observe that Φ(p, Th) is rather sensitive to p because the values span from

0.0062 (minimum, p = (3, 10)) to 2.895 (maximum, p = (6, 6, 1) or p = (10, 2, 1), for
example).

The right part of Figure 1 depicts the histogram of Φ(p, Th) on uniform meshes.

Figure 2 is an analogy to Figure 1; it presents the same type of results for op-

timized meshes. The dependence on p is clearly visible. The S-shaped patterns

correspond to the structure of the ordering of P14. In each pattern, Φ(p, Th) de-

creases if the higher order polynomials move towards the right-end of the mesh.

The first pattern from the left begins with p = (1, 1, . . . , 1) giving the maximum

Φ(p, Th) = 0.298 and ends with p = (1, 2, 2, . . . , 2) and Φ(p, Th) = 0.075; ordinal
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Figure 1: N = 14, uniform meshes. Values Φ(p, Th) (left) and the histogram (right).
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Figure 2: N = 14, optimal meshes. Values Φ(p, Th) (left) and the histogram (right).

number 377. The next pattern begins with p = (3, 1, 1, . . . , 1) and Φ(p, Th) = 0.253;
ordinal number 378.

By comparing the cluster of minimum and near-to-minimum values in Figure 1

and Figure 2, we also infer that though the exact solution u is not a polynomial, it

is sufficiently well approximated by a few higher order polynomials. The minimum

value of Φ(p, Th) attained on the optimized meshes is equal to 0.0042 if p = (5, 8).
This is not a significant improvement over the uniform meshes.

Although the sensitivity to p is strong in the optimal mesh results, we should

not overlook the decrease in Φ. Even for the worst-case p, the error is one order

lower if the mesh is optimal. This is not the only evidence that mesh optimization
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Figure 3: Convergence of the minimum values of Φ if (a) p is optimal and Th is

uniform; (b) both p and Th are optimal. The horizontal axis shows N and the

vertical axis shows Φ, the error.

pays off. Let us compare the histograms. Among uniform meshes, only 146 degree

distributions guarantee the error less than 0.1; see the first bar in Figure 1 (right).

For the optimized meshes, we obtain more than 3300 such degree distributions.

Figure 3 shows the rate of convergence of both optimal p-FEM and optimal

hp-FEM. If evaluated through the minimum values of Φ, the difference between the

two methods applied to (3) is small. However, one should take into account that

there are only a few optimal and almost optimal p distributions on uniform meshes,

but significantly more p -Th couples can guarantee good performance if the mesh is

optimized; consider 0 < Φ(p, Th) ≤ 0.05 and compare Figure 1 and Figure 2. As

a consequence, although we strive to optimize both the mesh and p in the hp-FEM,

it seems to be advisable to pay somewhat more attention to the former than to the

latter. This conclusion agrees with that of [4] where a more detailed analysis of

a different BVP is presented.
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Abstract

Integro-differential equations with time-varying delay can provide us with realistic

models of many real world phenomena. Delayed Lotka-Volterra predator-prey systems

arise in ecology. We investigate the numerical solution of a system of two integro-

differential equations with time-varying delay and the given initial function. We will

present an approach based on q-step methods using quadrature formulas.

1. Introduction

Integro-differential equations (IEs) are one of the most important mathematical

tools used in modelling problems of many real world phenomena. Here, we consider

the Lotka-Volterra like predator-prey model [1]. This system of two IEs is frequently

used to describe the dynamics of biological systems in which two species interact.

One is the population of predators of the size x1(t) and the other is that of preys of

the size x2(t)

x′

1(t) =

[

c− k1x2(t)−

∫ 0

−τ

α1(x2(t+ s))ds

]

x1(t)

x′

2(t) =

[

−c+ k2x1(t)−

∫ 0

−τ

α2(x1(t + s))ds

]

x2(t)

where x′

1(t) and x′

2(t) represent the growth of the two populations with time, c, ki, αi

are parameters representing the interaction of the two species.

Also, one of the models for human immunodeficiency virus (HIV) in a homoge-

neously mixed single-gender group with distributed waiting times can be described

using IEs, see [3].

So elaboration of numerical methods for IEs is a very important problem. Pre-

sently, various specific numerical methods are constructed for solving specific IEs.

Most investigations are devoted to numerical methods for systems with discrete de-

lays, see e.g. [2].

The approach described in this article has been applied to numerical solution of

integro-differential equations with time-varying delay (IDETVD) .
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2. Equations with time-varying delay

Delay differential equations (DDEs) represent the principal form of mathematical

models occuring in Ecology. In DDEs, also called functional differential equations or

time-delay systems, dependent variables are simultaneously evaluated at more than

one value of the independent variable.

The considered DDE Cauchy problem is

x′ = f(t, x(t + τ1), · · · , x(t + τk)), t ≥ t0,

x(t) = Ψ(t), t ≤ t0

f is a function with the independent variable t representing time, dependent vari-

able x(t) is a phase vector and x(t + τj), τj ∈< −rj , 0 >, j = 1, 2, · · · , k are the

functions characterizing the influence of the pre-history of the phase vector on the

dynamics of the system. A class of DDE with constant delay τj , j = 1, 2, · · · , k is

called DDEs with discrete delay. Supposed that delay τj = τj(t) we speak about

differential equations with time-varying delay.

Let us consider some of them. The delay logistic equation

x′(t) = r(t)x(t)

(

1−
x(τ(t))

K

)

, τ(t) ≤ t

describes a delay population model and is known as Hutchinson’s equation [2]. One

can see that it is insufficient to know the initial value only to define the phase

vector x(t). It is also necessary to know an inital function (initial pre-history) Ψ(t).
Hence the DDEs are generalizations of the ODEs such that the velocity x′(t) of

a process depends also on the pre-history x(τ(t)), τ(t) ≤ t.
Delay can also be distributed as in the equation

x′(t) = f

(

t, x(t),

∫ 0

τ(t)

α(t, s, x(t+ s))ds

)

.

So, the Volterra integro-differential equations

x′(t) = f

(

t, x(t),

∫ t

0

β(t, s, x(s))ds

)

represent a special class of DDEs with distributed delays.

The purpose of this article is to derive a numerical method for the approximate

solution of delay differential systems with time-varying delay of the form

x′(t) = f

(

t, x(t), x(τ1(t)),

∫ 0

τ(t)

χ(t, s, x(t + s))ds

)

.

In [3], Kim and Pimenov proposed an exact solution to a system of IDETVD

x′

1(t) = − sin(t)x1(t) + x1(t−
t

2
)−

∫ 0

−t/2

sin(t+ s)x1(t+ s)ds− ecos(t) (1)

x′

2(t) = − cos(t)x2(t) + x2(t−
t

2
)−

∫ 0

−t/2

cos(t+ s)x2(t+ s)ds− esin(t) (2)
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corresponding to an inital function

Ψ1(s) = ecos(s)

Ψ2(s) = esin(s)
, s ≤ 0.

The solution (x1(t), x2(t))
T , t ∈ [0,∞) of (1), (2) has the form

x1(t) = ecos(t),
x2(t) = esin(t).

Then by considering the maximum absolute errors in the solution at grid points

for different choices of step size, we can conclude how further presented approaches

produce accurate results in comparison with those exact ones.

3. A numerical approach

The most popular numerical approaches for solving Cauchy problem of ODEs are

called finite difference methods. Approximate values are obtained for the solution

at a set of grid points {tn : n = 1, 2, · · · , N} and the approximate value at each

point tn+1 is obtained by using some of values obtained in previous steps. The best

known methods are Euler’s methods (explicit, implicit), trapezoidal method, Milne’s

methods, Adams methods.

Most integrals cannot be evaluated explicitly and with many others it is often

faster to integrate them numerically rather than evaluating them exactly. Formulas

using such interpolation with evenly spaced grid points are the composite trapezoidal

rule and the composite Simpson’s rule. These Newton-Cotes formulas can be used

to construct a composite method with mentioned methods.

The simplest way how to solve our problem is the combination of the explicit

Euler’s method with the trapezoidal rule, outlined in the following procedure solving

the problem (1) on an equidistant mesh tn+1 − tn = h, where we abbreviate x1(t)
by x(t).

First, the trapezoidal rule is defined by applying

x(tn+1) = x(tn)+
h

2

[

− sin(tn)x(tn)+x(tn/2)−

0
∫

−tn/2

sin(tn+ s)x(tn+ s)ds− ecos(tn)

− sin(tn+1)x(tn+1) + x(tn+1/2)−

0
∫

−tn+1/2

sin(tn+1 + s)x(tn+1 + s)ds− ecos(tn+1)

]

to successive subintervals [tn, tn+1], where

h = 2H, tn = 2kH, tn+1 = 2(k + 1)H, k = 0, 1, 2, . . . .
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Hence,

x(2(k + 1)H) = x(2kH) +H

[

− sin(2kH)x(2kH) + x(kH)

−

∫ 0

−kH

sin(2kH + s)x(2kH + s)ds− ecos(2kH) − sin(2(k + 1)H)x(2(k + 1)H)

+ x((k + 1)H)−

∫ 0

−(k+1)H

sin(2(k + 1)H + s)x(2(k + 1)H + s)ds− ecos(2(k+1)H)

]

Since
∫ 0

−(k+1)H

A =

∫

−kH

−(k+1)H

A +

∫ 0

−kH

A

and letting

I(k) =

∫ 0

−kH

sin(2kH + s)x(2kH + s)ds

I(k + 1) =

∫ 0

−(k+1)H

sin(2(k + 1)H + s)x(2(k + 1)H + s)ds

we have

x(2(k + 1)H) = x(2kH) +H
[

− sin(2kH)x(2kH) + x(kH)− I(k)− ecos(2kH)−

− sin(2(k + 1)H)x(2(k + 1)H) + x((k + 1)H)− I(k + 1)− ecos(2(k+1)H)
]

Now, we shall confine our discussion to evaluating I(k) and I(k + 1) approximately.

For a sufficiently small mesh size H the composite trapezoidal rule gives a good

approximation to the integrals

I(k) =

k−1
∑

p=0

H

2

[

sin((k + p)H)x((k + p)H) + sin((k + p+ 1)H)x((k + p+ 1)H)
]

I(k + 1) =

k
∑

p=0

H

2

[

sin((k + p+ 1)H)x((k + p+ 1)H)

+ sin((k + p+ 2)H)x((k + p+ 2)H)
]

However, it is possible to obtain finite sums which give better approximations by the

same amount of computation. One sees, immediately, that x(tn+1) can be computed

when tn+1 is the even multiple of H . If tn+1 is the odd multiple of H then we apply

explicit Euler method to the model equation on an equidistant mesh tn+1 − tn = h.
Then, the explicit Euler method is defined by applying

x(tn+1) = x(tn)+h

[

− sin(tn)x(tn) + x(tn/2)−

∫ 0

−tn/2

sin(tn + s)x(tn + s)ds− ecos(tn)
]
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to successive subintervals [tn, tn+1], where h = H, tn = 2kH, tn+1 = (2k + 1)H,
k = 0, 1, 2, · · · . This yields

x((2k + 1)H) = x(2kH) +H

[

− sin(2kH)x(2kH) + x(kH)

−

∫ 0

−kH

sin(2kH + s)x(2kH + s)ds− ecos(2kH)

]

It can be seen that this formula contains the integral I(k).
Also,

x((2k + 1)H) = x(2kH) +H
[

− sin(2kH)x(2kH) + x(kH)− I(k)− ecos(2kH)
]

.

4. Numerical experiments

In order to test the viability of the proposed composite methods and to demon-

strate its convergence computationally we have considered several tests with some

steps, to assess the convergence property and efficiency of methods mentioned in

Section 3.

We divide the time interval t ∈ [0, 6.3] into N subintervals in order to obtain the

approximate values for the solution at the grid points tn. Here we are only interested

in showing the errors of the solution at some grid points. The idea was to calculate

the numerical solution by Milne-Simpson’s method of 5-th order with the Simpson’s

rule on an equidistant mesh tn+1 − tn = h = 0.003. Table 1 contains the errors in

this numerical solution in selected gridpoints.

Numerical and exact results are illustrated in Figure 1 in the time varying plane

and in Figure 2 in the phase plane also.

Figure 1: Graph of x1(t) and x2(t) versus time.
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Figure 2: Graph of x1(t) versus x2(t).

t x1(t) error of x1(t) x2(t) error of x1(t)
2.1 0.6035988 0.0052716 2.3707579 0.0185469

4.2 0.6124669 0.0043827 0.4182918 0.0038792

6.3 2.7178976 0.0118452 1.0169558 0.0298354

Table 1: Errors in the numerical solution.

The solid lines indicate the graphs of exact solution (x1(t), x2(t))
T with

x1(0) = e, x2(0) = 1, t ∈ [0, 6.3]. Our program begins with the second order

trapezoidal formula and the explicit Euler’s formula, the accuracy then increases as

extra starting values become available.
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Abstract

A method for the second-order approximation of the values of partial derivatives

of an arbitrary smooth function u = u(x1, x2) in the vertices of a conformal and

nonobtuse regular triangulation Th consisting of triangles and convex quadrilaterals

is described and its accuracy is illustrated numerically. The method assumes that

the interpolant Πh(u) in the finite element space of the linear triangular and bilinear

quadrilateral finite elements from Th is known only.

1. Introduction

The problem to find second-order approximations of the first partial derivatives of

smooth functions u in the vertices of triangulations by means of the interpolant Πh(u)
only is actual since its formulation in [6] in the year 1967. Besides the widely ac-

knowledged method [7] there exist successful methods like [5] and [3]. In this paper,

we generalize the method of averaging from [2] to nonobtuse regular triangulations

consisting of triangles as well as convex quadrilaterals in general. Numerical ex-

periments indicate the second-order accuracy of this procedure. These high-order

approximations of the partial derivatives have many applications. See [1] for some

of them.

We denote [a1, a2] the Cartesian coordinates of a point a and |ab| the length of the

segment ab. For arbitrary points a1, . . . , am, operations ,,+“ and ,,−“ mean addition

and subtraction modulo m on the set {1, . . . , m}.

2. Bilinear quadrilateral finite elements

Besides the linear triangular finite elements, we work with the following bilinear

quadrilateral ones.

Definition 1. A reference bilinear finite element consists of
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Figure 1: The reference square.

a) the reference square K̂ = â1â2â3â4 from Fig. 1,

b) the local space Q
(1) = {a + bξ + cη + dξη | a, b, c, d ∈ R} and of

c) the parameters p̂(â1), . . . , p̂(â4) related to every function p̂ ∈ Q
(1). The parameters

determine the function p̂ uniquely.

Definition 2. A bilinear quadrilateral finite element consists of

a) an image K = a1a2a3a4 of K̂ by the injective bilinear mapping

[

x1

x2

]

= FK(ξ, η) ≡
4

∑

i=1

N̂ i(ξ, η)

[

ai1
ai2

]

(1)

with the Lagrange base functions

N̂1(ξ, η) = (1− ξ)(1− η)/4, N̂2(ξ, η) = (1 + ξ)(1− η)/4,

N̂3(ξ, η) = (1 + ξ)(1 + η)/4, N̂4(ξ, η) = (1− ξ)(1 + η)/4

in the space Q(1) related to the nodes â1, . . . , â4 consecutively. Then FK(â
i)=ai

for i = 1, . . . , 4 obviously and FK is an injection if and only if K is a convex

quadrilateral, i.e. the inner angle ∠ai−1aiai+1 of K is less than π for i = 1, . . . , 4
due to [4], Section 3.3,

b) the local space Q
(1)
K = {q | q = q̂ ◦ F−1

K for some q̂ ∈ Q
(1)} and of

c) the parameters q(a1), . . . , q(a4) related to every q ∈ Q
(1)
K . The parameters

determine the function q uniquely.

Lemma 1. The functions 1, x1, x2 belong to Q
(1)
K for every convex quadrilateral K.

Proof. If K = a1a2a3a4 is a convex quadrilateral then Q
(1)
K = {q | q ◦ FK ∈ Q

(1)}
is a direct consequence of Definition 2. This and

1 ◦ FK = 1 ∈ Q
(1)

x1 ◦ FK = N̂1(ξ, η)a11 + . . .+ N̂4(ξ, η)a41 ∈ Q
(1)

x2 ◦ FK = N̂1(ξ, η)a12 + . . .+ N̂4(ξ, η)a42 ∈ Q
(1)

give us the statement.
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Definition 3. If K is a triangle and convex quadrilateral then we denote by ΠK(u)
the linear and bilinear interpolant of a function u ∈ C(K) in the vertices of K,

respectively.

Lemma 2. Let us consider a bilinear quadrilateral finite element K = a1a2a3a4,
l = 1, 2 and a linear triangular finite element Tj = aj−1ajaj+1. Then the graph of

ΠTj
(u) is the tangent plane to that of ΠK(u) at the point aj, so that

∂ΠK(u)

∂xl

(aj) =
∂ΠTj

(u)

∂xl

∀ u ∈ C(K)

for j = 1, . . . , 4.

Proof. As the functions from Q
(1)
K are linear on every side of K, ΠK(u) is linear

on the segments aj−1aj and ajaj+1. Hence the segments pj−1pj and pjpj+1 for pi =
[ai1, a

i
2, u(a

i)], i = j−1, j, j+1, are subsets of graph(ΠK(u)). These segments belong

to a unique plane. This one is the tangent plane of graph(ΠK(u)) at aj and it

contains graph
(

ΠTj
(u)

)

as well. Lemma 2 follows immediately.

3. Nonobtuse regular triangulations

The symbols P(1) and P
(2) are reserved for the spaces of real linear and quadratic

polynomials in two variables and Ω for a non-empty bounded connected polygonal

domain in the plane. We say that K is an element when K is a triangle or a convex

quadrilateral, denote |K| the area of K, hK the diameter of K and ̺K the maximal

diameter of the circles inside of K.

A system Th of elements is said to be a triangulation of Ω when ∪K∈Th
K = Ω,

any two different elements have disjoint interiors and any side of an element is either

a side of another element or a subset of the boundary ∂Ω. Let us consider a vertex a
of (an element from) a triangulation Th. We call b a neighbour of a (in Th) when the

segment ab is a side of an element from Th and denote Nh(a) the set of neighbours

of a in Th. We say that a is an inner and boundary vertex when a ∈ Ω and a ∈ ∂Ω,
respectively.

Definition 4. A system T of triangulations of Ω is said to be

a) a family when for every ε > 0 there exists Th ∈ T satisfying hK < ε for all

K ∈ Th.

b) shape-regular when there is σ > 0 such that ̺K/hK > σ for all elements K of

any triangulation from T.

We work with a shape-regular family T of triangulations of Ω such that all inner

angles of the triangles from any triangulation in T are less than or equal to the right

angle. We call these triangulations nonobtuse regular.
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4. The method of averaging

It is well-known that ∂u/∂xl(a) = ∂ΠK(u)/∂xl(a) + O(hK) for a vertex a of

an element K from a nonobtuse regular triangulation, function u ∈ C2(K) and

for l = 1, 2. We construct a weight vector such that the corresponding weighted

average of the values of ∂ΠK(u)/∂xl in various vertices of the elements K with

vertex a approximates ∂u/∂xl(a) with an error of the second order. A special case

of this construction has been analysed in [2] for the nonobtuse regular triangulations

consisting of triangles only.

Calculating the approximations of ∂u/∂xl(a), we use local Cartesian coordinates

with origin a.

Defrinition 5. Let Th be a nonobtuse regular triangulation. We say that r =

(b1, . . . , bn) is a ring around

a) an inner vertex a of Th when

a1) {b1, . . . , bn} ⊇ Nh(a) and

bi /∈ Nh(a) =⇒ K = abi−1bibi+1 ∈ Th and ∠bi−1abi+1 > π/2,

a2) ∠bnab1, . . . ,∠bn−1abn have the same orientation and

a3) ∠bnab1 + · · ·+ ∠bn−1abn = 2π.

b) a boundary vertex a of Th when there is an inner vertex bj such that

b1) (b1, . . . , bj−1, a, bj+1, . . . , bn) is a ring around bj with n ≥ 5 or

b2) abj+1bjbj−1 ∈ Th and (b1, . . . , bj−1, bj+1, . . . , bn) is a ring around bj .

We say that the triangles U1 = bnab1, . . . , Un = bn−1abn are related to r and set

H(a) = max1≤i≤n |ab
i|.
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Figure 2: A ring around a) an inner vertex a and b) a boundary one.

In Fig. 2, the thick lines denote the quadrilaterals from the given triangulation

and the dotted lines indicate triangles U1, . . . , U6 in the case a) and U1, . . . , U7 in b).
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Definition 6. Let l = 1, 2, r = (b1, . . . , bn) be a ring around a vertex a of a nonobtuse
regular triangulation and let u ∈ C(Ω). Then we set

Bl[u](a) = f1
∂Π1(u)

∂xl

+ · · ·+ fn
∂Πn(u)

∂xl

. (2)

Here Π1(u), . . . ,Πn(u) are the linear interpolants of u in the vertices of the triangles

U1, . . . , Un related to r and the weight vector f = [f1, . . . , fn]
⊤ is the minimal 2-norm

vector such that Bl[u](a) is consistent, i.e. Bl[u](a) = ∂u/∂xl(a) for all u ∈ P
(2). Due

to [2], f is the minimal 2-norm solution of the equations M(r)f = d with

M(r) =











1 1 · · · 1
x2
ny1−x2

1
yn

D1

x2

1
y2−x2

2
y1

D2

· · ·
x2

n−1
yn−x2

nyn−1

Dn
yny1(xn−x1)

D1

y1y2(x1−x2)
D2

· · · yn−1yn(xn−1−xn)
Dn

yny1(yn−y1)
D1

y1y2(y1−y2)
D2

· · · yn−1yn(yn−1−yn)
Dn











, d =









1

0

0

0









,

[xi, yi] = bi and Di = D(a, bi−1, bi) for i = 1, . . . , n.

Definition 5 is in agreement with Lemma 2 and with the following statement:

Lemma 3. The system of equations M(r)f = d related to the ring r = (b1, . . . , b4)
around a vertex a is

a) unsolvable if a is a boundary vertex and

b) solvable if and only if the vertices b1, a, b3 as well as b2, a, b4 are situated on

one straight-line if a is an inner vertex.

We omit the proof of Lemma 3.

Example. For a = [0, 0], we approximate the partial derivative ∂u/∂x1(a) =

−0.5403023 of u(x1, x2) = sin(1+ 2x1 + x2)/(x2− 2) by B1[u](a). In Table 1, we use

the ring from Fig. 2 a) with H(a) = 1.3453624/2i for i = 1, . . . , 8.

i H(a) B1[u](a) ∂u/∂x1(a)− B1[u](a)
1 6.72681 e-1 -0.460947 -7.93549 e-2

2 3.36341 e-1 -0.519906 -2.03960 e-2

3 1.68170 e-1 -0.535183 -5.11974 e-3

4 8.40852 e-2 -0.539023 -1.27939 e-3

5 4.20426 e-2 -0.539983 -3.19584 e-4

6 2.10213 e-2 -0.540222 -7.98508 e-5

7 1.05106 e-2 -0.540282 -1.99563 e-5

8 5.25532 e-3 -0.540297 -4.98822 e-6

Table 1
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i H(a) B1[u](a) ∂u/∂x1(a)− B1[u](a)
1 1.15244 -0. -0.104569 e-1

2 5.76222 e-1 -0.577975 3.76723 e-2

3 2.88111 e-1 -0.556928 1.66261 e-2

4 1.44055 e-1 -0.545228 4.92589 e-3

5 7.20277 e-2 -0.541620 1.31737 e-3

6 3.60138 e-2 -0.540642 3.39385 e-4

7 1.80069 e-2 -0.540388 8.60568 e-5

8 9.00346 e-3 -0.540324 2.16627 e-5

Table 2

In Table 2, we use the ring from Fig. 2 b) with H(a) = 2.3048861/2i for i =
1, . . . , 8.

This example indicates the second order of error of the approximations Bl[u](a)
both for the inner and the boundary vertices a, but an analysis of the accuracy of

this averaging operator is necessary.
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Abstract

The computation of polynomial greatest common divisor (GCD) ranks among basic

algebraic problems with many applications, for example, in image processing and

control theory. The problem of the GCD computing of two exact polynomials is well

defined and can be solved symbolically, for example, by the oldest and commonly

used Euclid’s algorithm. However, this is an ill-posed problem, particularly when

some unknown noise is applied to the polynomial coefficients. Hence, new methods

for the GCD computation have been extensively studied in recent years.

The aim is to overcome the ill-posed sensitivity of the GCD computation in the pres-

ence of noise. We show that this can be successively done through a TLS formulation

of the solved problem, [1, 5, 7].

1. Approximate greatest common divisor

Suppose a pair of two polynomials f and g of degrees m and n,

f(x) =
m
∑

i=0

aix
m−i (a0am 6= 0) and g(x) =

n
∑

j=0

bjx
n−j (b0bn 6= 0) (1)

with a non-trivial GCD h of degree d is given, 1 ≤ d ≤ n ≤ m. Vectors of polynomial

coefficients are denoted by bold lower-case Latin letters, e.g. f = [a0, a1, . . . , am]
T

represents the vector of coefficients of f . Similarly, g, u, v and h will denote the

vectors of coefficients of involved polynomials g, u, v and h.
Then there exist polynomials u and v of degrees m − d and n − d, respectively,

so that

uh = f and vh = g. (2)

Equations in (2) can be rewritten to the matrix-vector notation as

Sd(f, g)

[

v

−u

]

= 0, (3)
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where

Sd(f, g) =

























a0 b0
a1 a0 b1 b0
... a1

. . .
... b1

. . .

am
...

. . . a0 bn
...

. . . b0
am a1 bn b1

. . .
...

. . .
...

am bn

























∈ R
(m+n−d+1)×(m+n−2d+2)

︸ ︷︷ ︸

n− d+ 1 col.

︸ ︷︷ ︸

m− d+ 1 col.

is, except the case d = 1, rectangular m+ n− d+1 by m+ n− 2d+2 matrix called

the dth Sylvester subresultant matrix. The coefficients {ai} of f occupy the first

n− d+ 1 columns and the coefficients {bj} of g occupy the last m− d+ 1 columns.

Hence, Sd(f, g) is the block matrix consisting of the two Cauchy matrices, Sd(f, g) =
[Cn−d+1(f), Cm−d+1(g)].

1 The Sylvester matrix is then the matrix S(f, g) = S1(f, g)
= [Cn(f), Cm(g)] ∈ R

(m+n)×(m+n).

The most important relations between the GCD and the Sylvester matrices are

summarised in the following theorem.2

Theorem 1. Suppose that f and g are polynomials of degrees m and n, m ≥ n, and
h = GCD(f, g). Then

i) rank (S(f, g)) = m+ n− d ⇐⇒ deg h = d,

ii) rank (Sd(f, g)) = m+ n− 2d+ 1 ⇐⇒ deg h = d,

iii) the coefficient vector h is a solution of the linear system
[

Cd+1(u)
Cd+1(v)

]

h =

[

f

g

]

. (4)

Moreover, if deg h = d, then

iv) rank (Sj(f, g)) < m+ n− 2j + 2, j = 1, . . . , d,

v) rank (Sj(f, g)) = m+ n− 2j + 2, j = d+ 1, . . . , n.

Hence, if deg h = d, then Sd = Sd(f, g) is rank deficient by 1 since Sd has

m+ n− 2d+ 2 columns and rank m+ n− 2d+ 1 by recalling the property ii) from

the theorem. Therefore,

Sd

[

v

−u

]

= 0 =⇒ ∃ s ∈ R :

[

v

−u

]

= svmin(Sd),

where vmin(Sd) is the right singular vector associated with σmin(Sd) = 0.

1The subscripts n− d+ 1 and m− d+ 1 in Cn−d+1(f) and Cm−d+1(g) represent the number of

columns filled with the coefficients of f and g, respectively.
2A proof is outlined in the second authors’ paper of these proceedings.
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The coefficients of h can be now easily computed. For this purpose we have

to calculate the smallest singular pair {σmin,vmin} of every matrix in the sequence

Sn, Sn−1, . . . , S1 until the first rank deficient matrix is found.3 Once, the rank de-

ficient matrix Sd is revealed, v and u can be extracted from the singular vector

vmin(Sd). The coefficients of h are then computed from (4).

The smallest singular value and its corresponding right singular vector of Sd can

be computed by the Gauss-Newton method, [4], i.e. by the iteration process

xi+1 = xi −

[

2τxT
i

Sd

]

†
[

τxT
i xi − τ
Sdxi

]

and ζi+1 =
‖Sdxj+1‖2
‖xj+1‖2

for τ sufficiently large.4 Then

xi −−−→
i→∞

vmin(Sd) and ζi −−−→
i→∞

σmin(Sd).

The GCD solver in [4, 6] is based on this iteration process. However, note that

in real computations some threshold θ must be applied to ζi to reveal the rank

deficiency. Assuming that the level of noise is not known, the solver in [4, 6] cannot

be used, since the numerical rank cannot be computed reliably, [1, 5].

Whether the level of imposed noise is known or not, vmin(Sd), u and v are com-

puted approximately and so the coefficients of h are not calculated exactly. Hence,

an approximate greatest common divisor (AGCD) is only computed.

2. Impact of noise

Numerically, Sd is considered to be rank deficient whenever σmin(Sd) ≤ θ for

a prescribed threshold θ. If rounding errors are only assumed, then θ = ε‖Sd‖2 with
a machine precision ε is usually used, [2] p. 261. However, if some additional noise of

unknown level is considered, then computations with all similar choices of θ usually

fail. In this case a different approach has to be developed.

Dependence of the GCD computation on noise can be seen from the following

example. Consider two polynomials f and g of degree 32,

f(x) =

8
∏

i=1

[

(x− r1αi)
2 + r21β

2
i

]

16
∏

i=9

[

(x− r2αi)
2 + r22β

2
i

]

,

g(x) =
16
∏

i=1

[

(x− r1αi)
2 + r21β

2
i

]

,

(5)

where αi = cos
(

πi
m

)

, βi = sin
(

πi
m

)

, i = 1, . . . , n, r1 = 0.5 and r2 = 1.5. These

polynomials have the exact GCD of degree 16. So the rank of the Sylvester matrix

S(f, g) is 48 by recalling Theorem 1 i).

3Note that if Sd is the first rank deficient matrix and d < n ≤ m, then every Sj in Sn, . . . , Sd+1

has full column rank using Theorem 1 v).
4The symbol (·)† denotes the Moore-Penrose inverse of (·).
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Figure 1: Singular values of the Sylvester matrix S(f, g) for f and g perturbed

componentwisely by the noise of the SNR = 108.

The numerical rank of S(f, g) is well defined and can be revealed by using Gauss-

Newton iteration for the choice θ = ε‖S(f, g)‖2 ≈ 10−12 in case when only rounding

errors are considered.

Suppose now, that a noise of the signal-to-noise ratio SNR = 108 is component-

wisely imposed to the coefficients of f and g. Figure 1 shows the singular values of

the Sylvester matrix of perturbed polynomials. For the choice θ = 10−12 the numer-

ical rank is 61 that is incorrect. The correct numerical rank 48 can be revealed with

θ = 10−4. The question, however, is how to estimate this θ only from the involved

data.

3. TLS formulation, methods for AGCD

For the exact polynomials the system of equations (3) can be transformed to the

system

Adx = cd, (6)

where cd is the first column of Sd and Ad is formed from the remaining m+n−2d+1

columns of Sd, Sd = [cd, Ad].

While the system (6) possesses exactly one solution x for the exact polynomials,

it does not possess any solution for the inexact polynomials, since the perturbed

polynomials are coprime with probability almost one, i.e. cd /∈ Range(Ad) for the

inexact polynomials. However, if the polynomials f and g are coprime, we can

demand to compute the minimal corrections of their coefficients, i.e. polynomials δf
and δg so that f + δf and g + δg have a non-trivial GCD with the highest possible

degree. Then, AGCD(f, g) = GCD(f + δf, g + δg).
Let us denote the Sylvester matrix of δf and δg by δSd = δSd(δf, δg), δSd =
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[hd, Ed], and let z = [δfT , δgT ]T be the vector of the coefficients of δf and δg. Then
δf and δg can be computed so that

(Ad + Ed)x = cd + hd

has exactly one solution x and ‖z‖2 is minimal. Hence, the problem, that is finally

solved, is the structured TLS problem:

min
z,x

‖z‖2

subject to (Ad + Ed)x = cd + hd

and [hd, Ed] is of the same structure as [cd, Ad].

(7)

Two methods for solving (7) are presented in [3]. These methods are modified and

customised for the AGCD computation in [1, 5].

Methods for the AGCD computation are not discussed in this paper, however

note, that Sylvester matrices are badly conditioned, for example, if considered poly-

nomials have coefficients that differ by several orders in magnitude. It is therefore

necessary to apply some preprocessing operations on polynomials before a method

is used. Particularly, these operations include

- normalisation of the coefficients by the geometric mean that preserves the prop-

agation of noise,

- variable substitution x = γw for minimising the ratio of the maximum to the

minimum coefficient of both polynomials f and g,

- considering a parameter α in S(f, αg) for weighting the coefficients of one

polynomial with respect to the coefficients of the second polynomial,

- column pivoting, i.e. a column of Sd for which the residual ‖Ady − cd‖2 is

minimal replaces cd in (6).

There are several possible ways how to compute α and γ, for example, they can be

computed as values that minimise the ratio

max {maxi=0,...,m |aiγ
m−i|,maxj=0,...,n |αbjγ

n−j|}

min {mini=0,...,m |aiγm−i|,minj=0,...,n |αbjγn−j|}
.

More information on the preprocessing operations is provided in [5].

Finally, Figure 2 shows the singular values of S(f, g) + δS(δf, δg) for the poly-

nomials f and g in (5) perturbed componentwisely by the noise of the SNR = 108.

The polynomials δf and δg are obtained by solving (7). We can see that the nu-

merical rank is now perfectly defined and so further computation of the GCD by the

procedure discussed in Section 1 can be processed.
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Figure 2: Singular values of S(f, g) + δS(δf, δg) where f and g in (5) are perturbed

componentwisely by the noise of the SNR = 108, and δf and δg are obtained by

solving (7).
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Abstract

We present here some details of our implementation of Wavelet-Galerkin method

for Poisson equation in C language parallelized by POSIX threads library and show

its performance in dimensions d ∈ {3, 4, 5}.

1. Introduction

Due to storage requirements and computational complexity, the approximate

solution of PDEs computed by standard numerical methods is usually limited to

problems with up to three or fourth dimensions. However in mathematical model-

ing, there is a lot of problems which involve more than three or four dimensions.

For example, the pricing of financial derivatives, problems in quantum mechan-

ics and particle physics. Here, the dimension grows with the number of consid-

ered derivatives, electrons or nuclei. An important issue for numerical methods for

higher-dimensional PDEs is that typical domains are usually hypercubes. And it

is well-known, that the curse of dimensionality can be broken on tensor product

domain (0, 1)d by using sparse grids [1] or by wavelets [5].

To use wavelets efficiently to solve PDEs, it is necessary to have very efficient

matrix-vector multiplication for vectors and matrices in wavelet coordinates and to

have at one’s disposal suitable wavelet bases. Wavelets should have short supports

and vanishing moments, be smooth and known in closed form, and a corresponding

wavelet basis should be well-conditioned.

In [5], authors were able to solve Poisson equation up to 10 dimensions by applying

an adaptive wavelet scheme with orthonormal continuous piecewise linear multi-

wavelets proposed in [6]. They exploited the fact that the corresponding stiffness

matrices are in tensor product wavelet coordinates well-conditioned independently

on the dimension. Their approximations converged in energy norm with the same

rate as the best N -term approximations independent of d with the cost of producing

these approximations proportional to their length up to a constant factor growing

potentially with the dimension, but only linearly.
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We try to improve results obtained in [5] by applying higher order wavelet ba-

sis. In recent years, several promising constructions of wavelets were proposed. We

mention, for example, a construction of spline-wavelet bases on the interval proposed

in [2]. Their bases are compactly supported and generate multiresolution analyses

on the unit interval with the desired numbers of vanishing wavelet moments for pri-

mal and dual wavelets. Moreover, the condition number of interval spline-wavelet

bases is close to the condition number of the spline wavelet bases on the real line for

bases up to order 4. In our contribution, we use recently proposed wavelets based

on quadratic splines [3] which have shorter supports and are better conditioned. It

is a modification of basis proposed in [4] with an improved condition number. Some

preliminary results were already presented in [7]. There, a sequential algorithm was

used to solve Poisson equation for d ∈ {2, 3}.

2. Problem formulation

We solve Dirichlet problem

−
d

∑

i=1

∂2u

∂x2i
= f x ∈ Ω = (0, 1)d

u = 0 x ∈ ∂Ω

by Galerkin method. Basis functions are wavelets based on quadratic splines pro-

posed in [3] extended to higher dimensions by tensor product. Stiffness matri-

ces are computed exactly. Used quadratic splines have points of discontinuity at
1
2L
, 2
2L
, . . . , 2

L
−1

2L
where L denotes the number of decomposition levels. Right-hand

side integrals are calculated by adaptive Simpson rule. We split integration to hy-

percubes of size (2−L)d which enables efficient parallelization. We solve the arising

system of linear algebraic equations originated from discretization by the conjugate

gradient method with standard wavelet preconditioning consisting in normalizing all

basis functions with respect to a bilinear form corresponding to stiffness matrix. It

practically means that the stiffness matrix is multiplied from both sides by a diago-

nal matrix which has at its diagonal square root of diagonal elements of the original

stiffness matrix.

We aim at an efficient implementation of adaptive wavelet methods for higher

dimensional problems. For this purpose it is necessary to implement an efficient

storage of sparse vectors and sparse matrices in wavelet coordinates and their efficient

multiplication. We have so far implemented an efficient algorithm for matrix-vector

multiplication in the case d = 1 and because stiffness matrices for Poisson equation

in higher dimensions are computed from the stiffness matrices for Poisson equation

in one dimension and from matrices of scalar products of basis functions in one

dimension, we apply it here also for d ∈ {3, 4, 5}. Here, we present a non-adaptive

implementation. It means that we choose a number of levels L and a dimension d
which leads to 2Ld basis functions.
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3. Implementation and parallelization

In next subsections, we shortly describe some implementation details – a compu-

tation of right-hand side integrals and a multiplication of vector by stiffness matrix.

3.1. Computation of right-hand side integrals

Right-hand side integrals are in the form
∫

(0,1)d
ψi1(x1) . . . ψid(xd)f(x1 . . . xd) dx1 . . . dxd, (1)

where functions ψij are piecewise quadratic. Therefore we can split hypercube (0, 1)d

to hypercubes of size (2−L)d and compute integrals
∫

xi11 . . . x
id
d f(x1 . . . xd) dx1 . . .dxd (2)

at each small hypercube for i1, . . . , id ∈ {0, 1, 2}. Consequently, we compute (1) as

a linear combination of integrals (2). To calculate (2) we use Fubini’s theorem and

a recursion. Let us denote xi =
i
2L
. We designed an implementation of Simpson rule

for a computation of iterated integrals I =
∫ xi+1

xi
F (x) dx described below in 1.-5.

Main goal of our design is to omit evaluation of the same value of function F twice

because it is again an integral and its evaluation is computationally expensive.

1. Compute recursively F (xi) and F (xi+1) and evaluate

I0 =
xi+1−xi

2
(F (xi) + F (xi+1)) .

2. Set j = 0.

3. Compute recursively F (ξi,k) with

ξi,k = xi +
2k−1

2L+j+1 for k = 1, 2, 3, . . . , 2j

and evaluate

I ′ = xi+1−xi

2j

2j
∑

k=1

F (ξi,k).

4. If |Ij − I ′| > ε, set j = j + 1, compute Ij =
1
2
(Ij−1 + I ′) and go to step 3.

5. Compute I ≈ 1
3
(Ij + 2I ′).

As mentioned above, we compute right-hand side integrals separately on hyper-

cubes (2−L)d. These integrals can be computed independently which enables simple

parallelization. Our implementation is in C language and for parallelization we use

a POSIX threads library. Every thread takes an index of a hypercube from a global

variable in a loop, then increases the index and computes integrals. Taking and

increasing global variable is a critical section. Therefore we use mutex (mutual

exclusion) to synchronize threads there.
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3.2. Multiplication of vector by stiffness matrix

We have implemented a very efficient algorithm of matrix multiplication in case

d = 1. It stores stiffness matrix with entries

dij =

∫ 1

0

ψ′

i(x)ψ
′

j(x) dx (3)

in a constant space with respect to number of levels L and run in a linear time with

respect to a matrix order. You can find a description of this algorithm in [8]. We

use a tensor product of 1D bases as a multi-dimensional basis

ψi1,...,id(x1, . . . , xd) = ψi1(x1) · · ·ψid(xd)

and entries of the corresponding stiffness matrix

ai1,...,id,i′1,...,i′d =

∫

[0,1]d
∇ψi1,...,id∇ψi′

1
,...,i′

d
. (4)

We derive how to express the matrix a through matrices d and g

gij =

∫ 1

0

ψi(x)ψj(x) dx.

Note that used spline-wavelet basis is not orthonormal and so g is not identity matrix.

We put d = 3 for the sake of simplicity. Matrix (4) is then given by

ai,j,k,i′,j′,k′ =

∫

[0,1]3
ψ′

i(x1)ψj(x2)ψk(x3)ψ
′

i′(x1)ψj′(x2)ψk′(x3) +

+ψi(x1)ψ
′

j(x2)ψk(x3)ψi′(x1)ψ
′

j′(x2)ψk′(x3) +

+ψi(x1)ψj(x2)ψ
′

k(x3)ψi′(x1)ψj′(x2)ψ
′

k′(x3)

and can be expressed as

ai1,i2,i3,i′1,i′2,i′3 = dii′gjj′gkk′ + gii′djj′gkk′ + gii′gjj′dkk′

and multiplication of right-hand side r with a as

∑

i′,j′,k′

(dii′gjj′gkk′ + gii′djj′gkk′ + gii′gjj′dkk′) ri′j′k′. (5)

To compute (5) we use the following algorithm

1. Compute r0ij′k′ =
∑

i′ gii′ri′j′k′ and r1ij′k′ =
∑

i′ dii′ri′j′k′ as a one-dimensional

multiplication for all j′, k′.

2. r0ijk′ =
∑

j′ gjj′r
0
ij′k′,

r1ijk′ =
∑

j′ gjj′r
1
ij′k′,

r2ijk′ =
∑

j′ djj′r
0
ij′k′ .
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3. r1ijk =
∑

k′ gkk′r
1
ijk′,

r2ijk =
∑

k′ gkk′r
2
ijk′,

r3ijk =
∑

k′ dkk′r
0
ijk′.

4. rijk = r1ijk + r2ijk + r3ijk.

Then, we have 8 matrix-vector multiplication in steps 1.–3. In each step, all multi-

plications are independent and are computed in parallel. In the case d = 4, we have

13 multiplications in 4 groups and for d = 5, we have 19 multiplications in 5 groups.

4. Numerical experiments

We run our code for Poisson equation in dimensions d ∈ {3, 4, 5} with the solution

u(x1, x2, . . . , xd) = (1− x1)(1− x2) . . . (1− xd)
(

1− e(−10x1x2...xd)
)

.

In Table 1, d denotes dimension, L denotes the decomposition level of wavelet basis,

N is the matrix size, RHS16 (m) and RHS8 (m), respectively denotes time of

computation of right-hand side integrals in minutes in 16 and 8 threads, respectively,

#CG denotes the number of iterations of the conjugate gradient method and CG(m)

denotes time of computation of the conjugate gradient method in minutes. We used

for our computation a processor with frequency 2.3 GHz and with 16 cores.

d L N RHS16(m) RHS8(m) #CG CG (m) L2 norm of error

3 8 224 10 21 177 100 1.6 · 10−11

3 9 227 136 260 199 920 1.1 · 10−12

4 5 220 9 18 161 5 5.9 · 10−9

4 6 224 49 92 203 120 4.5 · 10−10

5 4 220 250 480 128 3 1.5 · 10−8

5 5 225 520 - 176 200 1.5 · 10−9

Table 1: Results of numerical experiments.

5. Conclusion

We have presented here some details of our implementation of Wavelet-Galerkin

method for Poisson equation in dimension d ∈ {3, 4, 5} in C language parallelized

by POSIX threads library. Parallelization of evaluation of right-hand side integrals

is efficient – enables concurrent evaluation by as many threads as the number of

available computational cores. The ratio of total CPU time and real time is in

the case of 16 threads around 15.8. This is not the case for the conjugate gradient

method and our future goal is to improve it. Another goal is to design and implement

appropriate data structures for adaptive methods.
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[8] Šimůnková, M.: Multiplication by wavelet matrix – efficient implementation. Sub-

mitted to ACC Journal.

74



Programs and Algorithms of Numerical Matematics 16

J. Chleboun, K. Segeth, J. Š́ıstek, T. Vejchodský (Eds.)
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Abstract

The presented contribution maps the possibilities of exploitation of the massive

parallel computational hardware (namely GPU) for solution of the initial value prob-

lems of ordinary differential equations. Two cases are discussed: parallel solution of

a single ODE and parallel execution of scalar ODE solvers. Whereas the advantages

of the special architecture in the case of a single ODE are problematic, repeated so-

lution of a single ODE for different data can profit from the parallel architecture.

However, special algorithms have to be used even in the latter case to avoid code di-

vergence between individual computational threads. The topic is illustrated on several

examples.

1. Introduction

The modern Graphical Processor Unit (GPU) serves as a powerful graphics engine

thanks to its highly parallel programmable processor. As a parallel device it features

peak arithmetic and memory bandwidth that substantially outpaces its CPU coun-

terpart. Contemporary graphics processors thus operate as co-processors within the

host computer.

There are several peculiarities in the GPU architecture from the point of view

of a regular PC user, namely rather complicated memory access and parallel archi-

tecture of the graphics multiprocessor. Whereas a high level programming interface

can unify the memory access up to certain limit, parallel algorithms for GPUs have

to be treated in a special way, see e.g. [6].

Graphics processors are built as multithreaded SIMD (single instruction, multiple

data) devices. It means that each instruction of the code is preformed on a set of data

at once. Any exception in data treatment (like data dependent branches) results in

splitting of the program flow and leads to a significant degradation of performance.

2. Parallel solution of an ordinary differential equation

Solution of an ordinary differential equation is a sequential problem in its nature.

There are only several parallelisable points in a general procedure of an ODE solver,

usually regarding evaluation of the integrated functions.
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In his exhaustive review paper [2] Burrage follows the classification of the seminal

Gear’s work [4]. He divides the techniques into two different categories: parallelism

across the method and parallelism across the system. The first group comprises

methods which exploit concurrent function evaluations within one ore more steps.

The second group includes methods based on waveform relaxation. These methods

decouple the original system into a set of small and independent subsystems which

can then be solved in parallel.

According to literature survey, both categories are still being developed, but not

in conjunction with GPU computation. The high cost of communication between

CPU and GPU and demand of synchronous operation on the whole set of data

make this computational environment specific. To achieve improvement if a GPU is

used, any of the methods mentioned above ought to request thousands of function

evaluation for each step. On the other hand, if the dimension of the coupled ODE

system is large, a single RHS evaluation can exploit GPU accelerated matrix/vector

multiplication, matrix inverse evaluation etc.

Only a few papers dealing with ODEs and GPU are availalabe up to now. They

mostly reflect problems originating from biomechanics or chemistry, see e.g. [10] or

are dealing with evolutionary differential equations. Only three projects can be found

on internet which aim at implementation ODE solvers to the GPU hardware:

CULSODA [3] is an adaptation of the highly sophisticated algorithm LSODA

(adaptive steplength, automatic stiff/non-stiff method switching etc, see [5]) for

NVIDIA’s CUDA compiler. It does not contain any parallel code in itself. The

procedure can be used to perform a parameter study of a single ODE system. As it

will be shown in the next section, usability of the CULSODA code is rather limited.

It seems that the project has been abandoned since 2009.

ODEINT V2 [1] is a general C++ library for numerical solution of ODE. With

most integration methods it offers exploitation of CUDA capable hardware. The

authors claim that the GPU is worth to employ in the following applications: pa-

rameter studies, large systems like ensembles of lattices, discretizations of PDEs, etc.

CUDA-sim [9, 10] is a Python package providing CUDA GPU-accelerated bio-

chemical network simulation. The package offers ODE solver based on CULSODA

implementation and stochastic differential equation solver according to the Euler-

Maruyama algorithm. It’s usage is limited to the case when a large number of

independent ODEs are to be solved en bloc.

It seems that none of the sophisticated methods mentioned in [2] or newer papers

is implemented in the available libraries. On the other hand, there are certain tasks

which are based on solution of a large number of independent ODEs or systems.

Even if the beautiful theory of parallel ODE solvers cannot be employed in this

cases, existing cheap GPUs could significantly speed up the computation in such

a situation as it will be shown in the next section.
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3. Example

Two tasks routinely performed by engineers are good candidates for a parallel

processing example: computation of response spectra and resonance curve.

Response spectra ρ(ω) of recorded time history is a plot of the peak or steady-

state response of a series of oscillators of varying natural frequency ω2 that are

forced into motion by the recorded signal a(t), cf. (1). The natural frequency of

the oscillators is taken as the independent variable, coefficient of damping β is pre-

defined as a parameter, see e.g. [8]. Resonance curve R(ω) is a similar plot of the

peak or steady-state response of a structure described by a system of differential

equations f(t), that is forced into motion by a harmonic function a0 sin(ωt). In this

case the independent variable is the frequency ω of the harmonic input motion (2) .

ρ(ω) = max
0<t<T

|y(t)| , where ÿ + 2βẏ + ω2y = −ä (1)

R(ω) = max
0<t<T

|y(t)| , where f(y, ẏ, ÿ, . . . , t) = a0 sin(ωt) (2)

The both problems are similar and lead to solution of a large number of independent

initial value problems. In this case, the parallel computation is an obvious choice.

Evaluation of the resonance spectra will be illustrated using the following exam-

ple. The equation (3) describes movement of the mathematical pendulum with an

external excitation in the suspension point (see the detailed derivation in [7]):

ξ̈ +
1

2r2
ξ
d
2

dt2
(ξ2 + ζ2) + 2βξ ξ̇ + ω2

0

(

ξ +
1

2r2
ξ(ξ2 + ζ2)

)

= −ä (a)

ζ̈ +
1

2r2
ζ
d
2

dt2
(ξ2 + ζ2) + 2βζ ζ̇ + ω2

0

(

ζ +
1

2r2
ζ(ξ2 + ζ2)

)

= 0 (b)



















(3)

where ξ, ζ are components of the projection of the pendulum’s bob to the (xy)
plane, r is the length of the pendulum, ω2

0 = g/r is the natural frequency of the

corresponding linear pendulum and g is the gravitational acceleration. The viscous

damping is denoted as βξ, βζ in respective directions. As the harmonic excitation

a(t) = a0 sin(ωt) acts in the ξ direction only, the basic type of motion takes course in

the vertical (xz) plane if the time history starts under homogeneous initial conditions.

With the increasing amplitude of the excitation a(t), the in-plane movement can lose

its stability and movement in the transversal direction ζ can occur.

If the resonance curve is to be computed, it is necessary to perform numerical

solution of the system (3) for a large number of excitation frequencies ω. Two numer-

ical methods enter into comparison: the CULSODA solver and in-house implemented

simple backward Euler solver.

Table 1 shows the timings for CULSODA solver and various numbers of ODE

solution threads. Two experiments are shown: the real case, when each thread solves

ODE for its own excitation frequency, and the unrealistic one when all threads do

exactly the same work (the frequency ω is the same for all the threads). The first

case shows the devastative effect of the thread divergence on the overall performance
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# values 1024 8192 16 384 32 768 1024 8192 16 384 32 768

thread divergence (ω = 1, ..., 10) no thread divergence (ω = 1)

GPU (sec) 19.2 40.7 70.7 127.3 0.4 0.9 1.7 3.4

CPU (sec) 0.54 4.21 8.54 16.4 0.4 2.8 6.0 11.1

Table 1: Timing of the resonance curve enumeration using CULSODA in single prec.

CPU: 2× Intel Xeon X5560 (16 threads), GPU: NVIDIA Quadro 4000 (256 cores).

# values 64 1024 8192 16 384 32 768

GPU (sec) 1.75 1.93 2.97 5.84 11.06

CPU (sec) 0.74 8.89 72.49 143.21 295.1

Table 2: Timing of the resonance curve enumeration using simple backward Euler

method with constant step length. CPU: 2× Intel Xeon X5560 (16 threads, single

precision), GPU: NVIDIA Quadro 4000 (256 cores, single precision).

of the GPU. The second case shows the theoretical potential of the GPU. Starting

from certain problem size (1000 threads in this example) GPU is processing faster

than CPU. The thread divergence in the first case is caused by two reasons: (a) the

equation significantly changes its properties for growing ω and (b) the LSODA code

changes its course accordingly.

The adaptivity of the LSODA algorithm is a great disadvantage when used in the

GPU code. To eliminate the thread divergence a simple backward Euler ODE solver

has been implemented. To avoid any unnecessary jumps and conditions, the linear

equation solver procedure used in the Newton method has been hard-coded for a pre-

determined dimension using the Crammer rule. Number of iterations of the Newton

method has been fixed. The method exhibits reasonable accuracy for a sufficiently

small step. Table 2 lists the corresponding timings for the backward Euler solver.

There is no doubt about the winner in this case: starting with 256 computational

threads the GPU becomes significantly faster.

The both results are not intended to compare the individual methods. In a scalar

case the LSODE algorithm is faster. In order to keep the accuracy reasonable the

backward Euler code uses much smaller step size than the LSODE solver. Moreover,

whereas the LSODE requires about 2 function evaluation for each step and one

Jacobian for (about) 10 steps, the backward Euler evaluates f(y, t) and the Jacobian

in each step and for each iteration of the Newton method.

The response spectrum is usually computed using the Newmark method. The

Newmark method is an explicit second order method whose recurrence is tailored for

the second order equation of motion, see (1). It is especially convenient in the (usual)

case when some measured record enters the computation as a set of regularly sampled

discrete values. It supposes a fixed length of the integration step. Figure 1 shows

timing of the implementation for different numbers of frequencies. As the simple
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Figure 1: Timing of response spectra enumeration (El Centro earthquake record,

31 000 samples, ∆t = 0.001) using the Newmark recurrence formula. The CPU tim-

ing for single and double precision does not differ.

CPU 1: 2× Intel Xeon X5560 (16 threads), GPU 1: NVIDIA Quadro 4000

(256 cores). CPU 2: Intel i7 950 (8 threads), GPU 2 : NVIDIA GT430 (64 cores)

Newmark recurrence does not contain any branches, thread divergence cannot occur

in this case.

The speed difference between single and double precision arithmetic is shown

in Figure 1. The performance penalty for double precision is 1/2 for the advanced

NVIDIA Quadro 4000 GPU and 1/8 for the entry level GT430. The ratios correspond

well to the architectures of the both cards (one double precision floating point unit

is common for 2 cores in the high end NVIDIA GPUs or for 8 cores in GT430).

However, even the slower card can compete well with the dual Xeon workstation for

well chosen problems.

4. Conclusions

The great progress of the computer technology enables the scientific community

to solve fairly complex problems. Current GPUs are cheap devices with power of

a supercomputer. This demands the scientists to adopt higher level of knowledge of

programming techniques.

We have shown two examples of GPU utilization for numerical solution of ini-

tial value problems. Three numerical methods were presented: i) The adaptive

solver LSODA provided to be the least advantageous for GPU. ii) As an alter-

native, the backward Euler method is reasonably accurate and stable and can be

programmed in a manner which meet requirements of a fast GPU code. iii) Simple
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recurrence formula, simple arithmetic, no special functions, no jumps or branches and

no inter-thread communications make the Newmark procedure an ideal candidate for

employment of GPU.

It seems that the advanced methods for solution of a single large ODE system are

not very convenient when used for machines with SIMD architecture. However, the

presented examples exhibited possibility of fruitful utilization GPUs in practice. It

has been shown that in certain cases even an entry-level GPU can work faster than

a high-end CPU.
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Abstract

In this contribution, we will use the Maxwell-Cartesian spherical harmonics (intro-

duced in [1, 2]) to derive a system of partial differential equations governing transport

of neutrons within an interacting medium. This system forms an alternative to the

well known PN approximation, which is based on the expansion into tesseral spherical

harmonics ([3, p. 197]). In comparison with this latter set of equations, the Maxwell-

Cartesian system posesses a much more regular structure, which may be used for

various simplifications that could be advantageous from computational point of view.

1. Introduction

Consider the monoenergetic, steady-state neutron transport problem with fixed

volumetric sources1 in a domain V ⊂ R
3 filled with isotropic medium interacting

with the neutrons. Solution of this problem describes the stationary distribution

of neutrons within V together with their motion directions and is called angular

neutron flux density (or shortly angular flux ). In standard notation, the angular

flux is expressed by function ψ(r,Ω) where r = [x, y, z]T ∈ V and components of the

direction vector are given in spherical coordinates as

Ω =





Ωx

Ωy

Ωz



 =





sin ϑ cosϕ
sinϑ sinϕ

cosϑ



 = Ω(ϑ, ϕ), ϑ ∈ [0, π], ϕ ∈ [0, 2π).

Angular neutron flux is therefore a function defined in a five-dimensional domain

V × S2 (S2 denoting the unit 2-sphere). Numerical methods that can be used to de-

termine the solution of practically significant neutron transport problems are usually

constructed by first semi-discretizing the governing equation with respect to the an-

gular variable Ω, yielding a system of PDE’s in space, and using standard numerical

methods like the finite volume or finite element methods to solve this system.

1The extension to energy- or time-dependent problems would be straightforward.
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In this paper, we will be interested only in the angular semi-discretization of the

neutron transport equation. One of the most popular method to accomplish this task

is the method of spherical harmonics. In this method, the angular flux is expanded

into a series of tesseral spherical harmonics ([3, p. 197]) which form a complete

orthonormal basis of the space L2(S2) of functions square-integrable with respect

to Ω. By considering only spherical harmonics of degrees n ≤ N 2 and performing

the Galerkin projection (with respect to Ω) of the neutron transport equation onto

the subspace spanned by those functions, a system of first-order hyperbolic PDE’s

in space, conventionally referred to as the PN system, is obtained3. However, the

resulting system is quite complicated, strongly coupled through differential terms

and lacks the invariance with respect to change of coordinate axes.

We therefore propose to use a different set of expansion functions to perform the

angular semi-discretization. In [7], the author arrived at a “far more symmetric and

compact” ([7, p. 1455]) form of the angularly semi-discretized system of equations

governing the distribution of plasma by using an expansion of the solution in terms

of special spherical harmonic tensors rather than the usual sets of tesseral spherical

harmonics. Although the derivation and properties of the spherical harmonic ten-

sors were not described in much detail in the paper, they are actually equal (up to

a normalization) to theMaxwell-Cartesian spherical harmonic tensors, rigorously de-

veloped in [1]. Use of these tensors have so far proven to be advantageous in solving

various electro-magnetics and quantum-mechanical problems ([1, 2]). Nevertheless,

they have not been used for neutron transport problems until very recently ([5]).

In section 2, we will introduce the neutron transport equation and basic nota-

tion. Section 3 provides a brief review of the Maxwell-Cartesian spherical harmonic

tensors, leaving the details to the original papers [1, 2]. The alternative to the

PN system is derived in section 4; the derivation is different from that of [5] and,

in our opinion, provides more insight into the structure of the equations. How this

insight can be used to obtain in a new way some known (but not yet completely

understood) approximations used in neutron transport methods is suggested in the

conclusion.

2. Mathematical model

The equation governing transport of neutrons, also known as the linear Boltz-

mann’s transport equation (shortly BTE), reads (in standard notation, as e.g. in

[11, Sec. 9.7]):

Ω ·∇ψ(r,Ω)+σt(r)ψ(r,Ω)−

∫

S2

[

σs(r,Ω ·Ω′) +
ν(r)σf (r)

4π

]

ψ(r,Ω′) dΩ′ = q(r,Ω),

(1)

where r ∈ V , Ω ∈ S2. The σ functions are called macroscopic cross-sections for

a particular interaction, distinguished by the subscripts (t for the total probability

2Note that there are 2n+ 1 tesseral harmonics of given degree n ≥ 0.
3Detailed description is given in many classical books on nuclear reactor physics, like [11, 4].
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of collision of any type with nuclei at r, s for scattering from direction Ω′ to Ω upon

the collision and finally f for the collision which results in fissioning the target nucleus

and releasing an average number of ν neutrons in the process). We will assume that

all the macroscopic cross-sections are given bounded measurable functions and look

for a non-negative ψ ∈ L2(V × S2)
4 given the volumetric distribution of neutron

sources q ∈ L2(V × S2). Boundary conditions will not be considered here – we may

remark, however, that the developments in this work make the incorporation of the

well-known Marshak approximation of the boundary conditions (e.g., [11, p. 340])

straightforward.

3. Maxwell-Cartesian spherical harmonics

A general linear combination of tesseral harmonics of given degree n is called sur-

face spherical harmonic of degree n. As shown in [1], a surface spherical harmonic of

degree n can also be uniquely represented by a totally symmetric traceless Cartesian

tensor of rank n 5 . Moreover, that paper presents a systematic way of obtaining

a TST tensor of any rank n whose components are surface spherical harmonics of

degree n in Cartesian frame of reference as defined by Maxwell in [8, p. 160]. Specif-

ically, Maxwell’s spherical harmonics based on Cartesian axes can be obtained (up

to a normalization constant) as components of P(n)(Ω) = DnΩ
n where Dn is the

so-called detracer operator which projects a general totally symmetric tensor of rank

n into the space of TST tensors of rank n (definition and various properties of this

operator are given in [1, Sec. 5]; we use here the “projection version” of the operator,

as discussed in the note in [1, p. 4311]).

We note that projection of P(n) along, say, z-axis (or any other because of the sym-

metry) yields (up to a normalization factor) the Legendre polynomials Pn (cf. Tab. 1):

P
(n)(Ω) · enz = P (n)

α1...αn
(Ω)δ3α1

· · · δ3αn
= P

(n)
33...3(Ω) =

n!

(2n− 1)!!
Pn(Ωz) ≡ CnPn(Ωz)

(2)

4We denote by L2(V × S2) the space of square-integrable functions with respect to the measure

dµ(V × S2) = drdΩ = dxdy dz sinϑdϑ dϕ .
5We will indicate a Cartesian tensor of rank n by superscribed (n) and index its 3n components by

a sequence of n Greek letters in subscript (each attaining value 1, 2, or 3, corresponding to Cartesian

axes x, y, z, respectively); for vectors (rank-1 tensors), we will keep using conventional bold-face

letters. Einstein’s summation convention will be used whenever same indices appear in a tensor

expression written in component notation. When a tensor is invariant under any permutation of

its indices, it is called totally symmetric; contraction of two tensors of same rank is a number

A
(n) ·B(n) := A

(n)
γ1...γn

B
(n)
γn...γ1

, contraction of a tensor P(n) in first index pair is defined as P
(n)
ααγ3...γn

and called trace in that index pair. Totally symmetric tensor whose trace in any index pair vanishes

is called totally symmetric traceless (abbr. TST). The tensor product C
(n+m) = A

(n) ⊗ B
(m) has

components C
(n+m)

α1...αnβ1...βm

= A
(n)
α1...αn

B
(m)

β1...βm

and the m-th power of a rank-n tensor is defined as

A
(n) ⊗A

(n) ⊗ · · · ⊗A
(n) (m-times). Finally, we will consider the differential operator ∇ as a vector

[ ∂
∂x
, ∂
∂y
, ∂
∂z

]T , but keep writing ∇A
(n) for ∇⊗ A

(n).
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(ez = [0, 0, 1]T , δij is the Kronecker delta); also, the well-known formulas for Legendre

polynomials could be extended within the tensorial framework to obtain explicit

formulas for P
(n)([3, Chap. VI]). This feature of Maxwell-Cartesian tensors makes

the resulting angular discretization a natural multidimensional extension of the 1D

PN system (which is actually based on a Legendre expansion of angular flux), having

an analogous form as the latter.

n Y
n(Ω) ∝ P

(n)(Ω) CnPn(Ωz)

0 1 1 1

1 Ωx, Ωy,Ωz Ωx, Ωy, Ωz Ωz

2 −Ω2
x − Ω2

y + 2Ω2
z, ΩyΩz,

ΩzΩx, ΩxΩy, Ω
2
x − Ω2

y

Ω2
x −

1
3
, ΩxΩy, ΩxΩz,

Ω2
y −

1
3
, ΩyΩz, Ω

2
z −

1
3

Ω2
z −

1
3

Table 1: Tesseral and Maxwell-Cartesian sph. harmonics and Legendre polynomials.

4. The MCPN approximation

Using the results of [3, Art. 114], the expansion of angular neutron flux in terms

of surface spherical harmonics could be written as

ψ(r,Ω) =

∞

∑

n=0

2n + 1

4π

∫

S2

ψ(r,Ω′)Pn(Ω ·Ω′) dΩ′ . (3)

As shown in [1, Sec. 7, Corollary II], Maxwell-Cartesian tensors appear in the fol-

lowing form of “addition theorem” for Legendre polynomials Pn:

P
(n)(Ω) · P(n)(Ω′) = CnPn(Ω ·Ω′) (4)

(Cn defined in (2)). Combining the two results, we obtain

ψ(r,Ω) =

∞

∑

n=0

ψ(n)(r) · P(n)(Ω), (5)

where we defined

ψ(n)(r) :=
2n+ 1

4πCn

∫

S2

ψ(r,Ω)P(n)(Ω) dΩ . (6)

To find the relations that must be satisfied by the angular expansion moments

ψ(n)(r) in order for (5) (or equivalently (3)) to be the solution of the BTE, we

insert the expansion (5) into (1) (with source term represented in terms of angular
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expansion moments analogously to (6)). Applying eq. (4) to the generalized Fourier-

series expansion of the scattering term in terms of the Legendre polynomials, we

obtain:

∫

S2

σs(r,Ω ·Ω′)ψ(r,Ω′) dΩ′ =

∞

∑

n=0

2n+ 1

4π
σsn(r)

∫

S2

Pn(Ω
′ ·Ω)ψ(r,Ω′) dΩ′

=

∞

∑

n=0

σsn(r)ψ
(n)(r) · P(n)(Ω).

Because of the orthogonality of P(n) of different ranks ([1, Sec. 8.7]), the fission part

will have the following form:

∫

S2

ν(r)σf (r)

4π
ψ(r,Ω′) dΩ′ =

∞

∑

n=0

ν(r)σf (r)

4π
ψ(n)(r)·

∫

S2

P
(n)(Ω′) dΩ′ = ν(r)σf(r)φ(r),

(7)

where φ ≡ ψ(0) is the scalar flux. Therefore, by inserting (5) into (1) and using these

results we obtain

∞

∑

n=0

[

Ω · ∇ψ(n) + σtψ
(n) − σsnψ

(n) − δn0νσfφ− q(n)
]

· P(n)(Ω) = 0 (8)

where each term in the square brackets is dependent only on r (omitted for brevity).

Because of the linear dependence among certain functions in each P
(n)(Ω) (owing

to the requirement of vanishing trace), we cannot deduce from (8) that for each n,
all components of the tensor in brackets must vanish. The angular discretization is

further hampered by the advection term which still contains the angular variable Ω.

However, using the detracer exchange theorem ([2, Sec. 5.2]) and total symmetry

of ψ(n) (by definition (6)), we note that the expansion (5) is actually equivalent to

a power series in Ω:

ψ(r,Ω) =

∞

∑

n=0

ψ(n)(r) ·Ωn. (9)

Using this fact to simplify the advection term (Ω · ∇)ψ(n) · Ωn, we may rewrite

equation (8) as

∞

∑

n=0

[

∇ψ(n−1) + σtψ
(n) − σsnψ

(n) − δn0νσfφ− q(n)
]

·Ωn = 0 (10)

with the term with n < 0 discarded.

Equation (10) expresses a vanishing linear combination of monomials restricted

to the unit sphere. Even though the monomials of all degrees are completely linearly

independent, once restricted to the unit sphere there exist nontrivial linear combina-

tions, such as Ω2
x+Ω2

y+Ω2
z−1 = 0. Hence we still cannot deduce that the expression
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in square brackets in (10) must be a zero tensor. However, in view of the theorem

in [1, Sec. 4.2], it is possible to eliminate these nontrivial linear combinations by

requiring the coefficients of the combination to form TST tensors for each n. Since

ψ(n) and q(n) are TST by definition, we only have to symmetrize and detrace the ad-

vection terms. We need to be careful, however, not to change the original equation.

This can be done by a clever rearranging of the terms in the sum. After using the

definition of the detracer operator, symmetrization by

[

A
(n)

]

sym
= ˜A

(n) with components ˜A(n)
α1...αn

=
1

n!

∑

π(α1...αn)

A(n)
α1...αn

(where the sum is over all permutations of the tensor indices) and regrouping the

sum by Ωn, we arrive at the final equation (with Σn := σtψ
(n) − σsnψ

(n) − δn0νσf )

∞

∑

n=0

{

[

∇ψ(n−1) −
n− 1

2n − 1
I⊗∇ · ψ(n−1)

]

sym

+
n+ 1

2n + 3
∇ · ψ(n+1) +Σnψ

(n) − q(n)

}

·Ωn = 0,

(11)

which implies that each component of the TST coefficient tensor of rank n in curly

brackets must vanish.

5. Conclusion and outlook

By truncating the expansion (9) (or (5)) at n = N for some N ≥ 0, we obtain

from eq. (11) an alternative set to the ordinary PN equations which could be called

an MCPN approximation (because its solution represents the expansion of angular

flux into Maxwell-Cartesian surface spherical harmonics of degrees up to N). The

symmetric and traceless structure of the MCPN equations could be used to provide

new perspectives on some other widely used approximations or to create new ones.

For instance, by projecting each tensor along any chosen axis, we obtain one dimen-

sional equations equivalent with the 1D PN equations (after suitable normalization

of ψ
(n)
z ). This indicates the possibility to investigate the original ad-hoc derivation

of the popular SPN approximation (by formal extension of the 1D PN equations

into 3D, [6]) in the current tensorial framework. Similarly, a different normalization

of ψ(n) leads to the system derived in [5]. However, the derivation in [5] is par-

tially formal and does not take into account all the important properties of spherical

harmonic tensors (in particular their tracelessness and linear dependence for given

degree).

There is also an interesting link to an old article of Selengut ([10]) in which the

full multidimensional P3 solution is obtained by solving a set of two coupled diffusion

equations6 with special interface conditions in presence of multiple heterogeneous re-

gions. Selengut’s derivation of the set is however quite puzzling (see also commentary

6much like in the SP3 approximation, but apparently without restrictions on dimensionality or

cross-sections other than the usual isotropic scattering and volumetric source assumptions
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in [9, Sec. 5.2]) and his equations have never been either analyzed or at least numer-

ically tested. On the other hand, we have been able to derive Selengut’s equation

for scalar flux (even with anisotropic scattering) by combining the MCP3 equations

into an equation for ψ(2) and adding a compatibility condition of vanishing trace of

ψ(2). Further work in this direction is currently under way.
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Abstract

This paper describes model combining elasticity and plasticity coupled to isotropic

damage. However, the the conventional theory fails after the loss of ellipticity of the

governing differential equation. From the numerical point of view, loss of ellipticity is

manifested by the pathological dependence of the results on the size and orientation

of the finite elements. To avoid this undesired behavior, the model is regularized by

an implicit gradient formulation. Finally, the constitutive model is extended to the

large-strain regime. The large strain model is based on the additive decomposition of

the logarithmic strain and preserves the structure of the small-strain theory.

1. Introduction

In this proceedings we will explore an extension of the small strain models com-

bining elasticty and plasticity with isotropic damage, to the large strain regime.

The extension to the large strain regime is based on the additive decomposition of

the logarithmic strain into elastic and plastic part. The main acctractivness of this

approach is in the modular framework consisting from three steps:

1. Definition of the elastic and plastic part of the logarithmic strain.

2. Computation of the generalized stress tensor, energy conjugated to the logarith-

mic strain and appropriate generalized stiffness via an algorithm that preserves

structure of the small strain theory.

3. Transformation of the generalized tensors to the second Piola Kirchhoff stress

and appropriate stiffness.
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2. Constitutive model

In this section a model combining elasto-plasticity coupled with isotropic dam-

age is described. The main feature of plasticity models is irreversibility of plastic

strain while irreversible processes related to damage lead to degradation of stiffness.

The basic equations include an additive decomposition of total strain into elastic

(reversible) part and plastic (irreversible) part,

εij = εeij + εpij , (1)

the stress strain law,

σij = (1− ω (κ)) σ̄ij = (1− ω (κ))De
ijklε

e
kl, (2)

loading-unloading conditions in Kuhn-Tucker form,

f(σ̄ij, κ) ≤ 0 λ̇ ≥ 0 λ̇f(σ̄ij , κ) = 0, (3)

evolution laws for plastic strain,

ε̇pij = λ̇
∂f

∂σ̄ij
, (4)

and for cumulated plastic strain,

κ̇ =
√

ε̇pij ε̇
p
ij, (5)

the law governing the evolution of the damage variable,

ω(κ) = ωc(1− e−aκ), (6)

and the hardening law,

σY (κ) = 1 + σH(1− e−sκ). (7)

In the equations above, σ̄ij is the effective stress tensor, De
ijkl is the elastic stiffness

tensor, f is the yield function, λ is the plastic multiplier, ω is the damage variable,

κ is the cumulated plastic strain, σY is the yield stress and s, a, σH and ωc are

positive material parameters, to be identified from experiments. Superior dot marks

the derivative with respect to time. To describe specific material, suitable yield

function needs to be introduced.

2.1. Regularization

Standard damage-plasticity models with softening may lead to localization of

inelastic strain into narrow process zones. For traditional models formulated within

the classical framework of continuum mechanics, such zones have an arbitrarily small

thickness, and failure can occur at extremely low energy dissipation, which is not

realistic. The mathematical model becomes ill-posed due to the loss of ellipticity of
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the governing differential equation and results obtained numerically are not objective

with respect to the discretization. A general way to overcome pathological sensitivity

of the numerical results to the finite element mesh is to adopt nonlocal continuum

formulations. We focus our attention to the implicit gradient formulation, which

requires only C0 continuous finite element approximation. The nonlocal cumulated

plastic strain is computed from a Helmholtz-type differential equation

κ̄− l2∇2κ̄ = κ (8)

with homogeneous Neumann boundary condition

∂κ̄

∂n
= 0. (9)

In (8), l is the length scale parameter and ∇ is the Laplace operator. Note that

for present formulations, the nonlocal cumulated plastic strain affects only damage

evolution while the yield condition remains local.

However, it can be shown that the implicit gradient formulation does not provide

full regularization of the present model, thus the so-called over-nonlocal formulation

has to be introduced. In this formulation, the damage variable is computed from

over-nonlocal cumulated plastic strain, which is obtained as a combination of local

cumulated plastic strain κ and nonlocal cumulated plastic strain κ̄.

κ̂ = (1− n)κ+ nκ̄ (10)

Full regularization can be achieved only if the parameter n is greater than 1.

3. Large-strain material models

Two sources of nonlinearities exist in the modeling of material. The first one is the

material nonlinearity. A suitable material model at small strain has been presented

in previous chapters. The second source of nonlinearity is related to the geometry.

At first, we introduce strain measures. Next, extension of the constitutive model

into the large-strain range based on the additive decomposition of the logarithmic

strain is presented.

3.1. Generalized strain measures

A family of strain measures derived from the right Cauchy-Green deformation

tensor was introduced by Seth and Hill [5, 6]. These generalized strain measures are

defined as

E(m) =
1

2m
(Cm − I) , m 6= 0 (11)

E(m) =
1

2
lnC, m = 0 (12)

where I is the second-order unit tensor. In the special cases when m = 0 and

m = 0.5 we obtain the so-called Hencky (logarithmic) and Biot tensor, while for
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m = 1 we obtain the right Green-Lagrange strain tensor. Recall that the Cauchy-

Green deformation tensor is defined as

C = FTF (13)

where F is deformation gradient. The spectral decomposition of C is

C =
3
∑

a=1

λaN
a ⊗Na (14)

where λa are the eigenvalues of the right Cauchy-Green deformation tensor and Na

are the corresponding eigenvectors. Equations (11) and (12) can be rewritten as

E(m) =
1

2m

(

3
∑

a=1

(λma − 1)Na ⊗Na

)

, m 6= 0 (15)

E(m) =
1

2

3
∑

a=1

lnλaN
a ⊗Na, m = 0 (16)

For a hyperelastic material, the generalized stress tensors work-conjugate to the

Seth-Hill strain measures and the corresponding generalized stiffness tensors can be

derived from the Helmholtz free-energy density function ψ and expressed as

S(m) =
∂ψ

∂E(m)
(17)

D(m) =
∂2ψ

∂E(m)∂E(m)
(18)

Application of the chain rule leads to the transformation formulas between gener-

alized stress tensor and tangent moduli and Lagrangean objects: the second Piola-

Kirchhoff stress

S = 2
∂ψ

∂C
= S(m) : P(m) (19)

and the stiffness tensor

D = P(m) : D(m) : P(m) + S(m) : L (20)

The transformation formulas exploit projection tensors

P(m) = 2
∂E(m)

∂C
(21)

L = 4
∂2E(m)

∂C∂C
(22)
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To differentiate the generalized strain measure with respect to the Cauchy-Green

deformation tensor, we exploit the following formulas, which are valid if the eigen-

values are mutually different. The result for multiple eigenvalues is obtained by the

rule of l’Hospital, see [2] for more details.

∂λa
∂C

= Na ⊗Na (23)

∂Na

∂C
=

3
∑

b6=a

1

λb − λa
Nb

(

Na ⊗Nb +Nb ⊗Na
)

(24)

Using equations (23) and (24) leads to the expression for the fourth-order projection

tensor

P(m)=
3
∑

a=1

3
∑

b=1

PaabbN
a⊗Na⊗Nb⊗Nb+

3
∑

a=1

3
∑

b6=a

Pabab

(

Na ⊗Nb
)

⊗
(

Na ⊗Nb+Nb ⊗Na
)

(25)

The components of this tensor are

Paabb = λm−1
a δab (26)

Pabab =
λma − λmb

2m(λa − λb)
(27)

where δab is the Kronecker delta. The term S(m) : L is not described here; its detailed

derivation can be found in [3] or [4].

3.2. Large-strain plasticity based on the logarithmic strain

The main attractiveness of the large-strain plasticity theory based on the loga-

rithmic strain is in the modular framework consisting of three steps. In the first step,

a logarithmic strain measure is computed from equation (12). In the second step,

this strain measure enters a constitutive law, which may have an identical struc-

ture as in the small-strain theory. In the third step, the generalized stress tensor

is transformed into the second Piola-Kirchhoff stress using expression (19) and the

appropriate stiffness tensor is obtained merely by replacing the generalized stiffness

tensor in equation (20) by the generalized algorithmic elasto-plastic stiffness tensor.

We can define the elastic part of the logarithmic strain as

E(0)
e = E(0) − E(0)

p (28)

with E(0) = 1
2
lnC, E(0)

p = 1
2
lnGp. Gp is a Lagrangian object often called plastic

metric. However, free energy function defined in terms of the logarithmic strain

is not polyconvex. Polyconvexity of the free-energy function is a very important

mathematical condition, which guarantee existence of the solution, see [11] for more

details. Nevertheless, the model is suitable for description of materials for which the

yield limit is reached at small strains.
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Abstract

This paper is devoted to barrier options and the main objective is to develop

a sufficiently robust, accurate and efficient method for computation of their values

driven according to the well-known Black-Scholes equation. The main idea is based

on the discontinuous Galerkin method together with a spatial adaptive approach.

This combination seems to be a promising technique for the solving of such problems

with discontinuous solutions as well as for consequent optimization of the number

of degrees of freedom and computational cost. The appended numerical experiment

illustrates the potency of the proposed numerical scheme.

1. Introduction

During the last decade, financial models have acquired increasing popularity in

option pricing. The valuation of different types of option contracts is very important

in modern financial theory and practice – especially exotic options such as discrete

barrier options. Most of the analytical formulas for these options is limited by strong

assumptions, which led to the application of numerical methods instead.

Therefore, the main goal of this paper is to develop an efficient, robust and

accurate numerical method for the barrier option pricing problem, which arises

from the concept of the discontinuous Galerkin (DG) approach for the space semi-

discretization, for more details see [5], and the backward Euler scheme for the dis-

cretization of the resulting ODE systems. In order to increase the efficiency of the

proposed method additionally, this approach is equipped with an h-adaptivity tech-

nique based on regularity and residual indicators, cf. [1, 2]. The resulting numerical

scheme is applied to a standard problem of discrete double barrier option pricing.

2. Barrier option pricing model

In what follows, we consider the double time-independent discrete barrier knock-

out option, i.e. option that expires worthless if one of the two barriers has been hit

at a monitoring date, see e.g. [1] and [6]. We denote by x the price of an underlying
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asset (e.g. stock) and by t the time to expiry of the option and let M := {0 = tM0 <
tM1 < . . . < tMl−1 < tMl = T} be the set of monitoring dates and B

−
be the lower

barrier and B+ the upper barrier active only at discrete instances tMl ∈M .

Let Ω≡(0, Smax), 0 < B
−
< B+ < Smax, be a bounded open interval and T stands

for maturity. The price u : QT = Ω × (0, T ) → IR of the discrete barrier option

satisfies the Black-Scholes partial differential equation with initial and boundary

conditions:

∂

∂t
u(x, t)−

1

2
σ2x2 ∂2

∂x2
u(x, t)− rx

∂

∂x
u(x, t) + ru(x, t) = 0 in QT , (1)

u(0, t) = 0 and u(Smax, t) = 0, (2)

u(x, 0) =

{

max(x−K, 0) · χ[B
−
,B+], (call)

max(K − x, 0) · χ[B
−
,B+], (put)

, x ∈ Ω, (3)

where σ > 0 and r > 0 are constant model parameters denoting the volatility of

stock price and the risk-free interest rate, respectively.

From the mathematical point of view the problem (1)–(3) represents a convection-

diffusion-reaction equation equipped with a set of two homogeneous Dirichlet bounda-

ry conditions (2) prescribed at the endpoints of interval (0, Smax) and with the initial

condition (3), where symbol K stands for the strike price and χ[B
−
,B+] denotes the

characteristic function of the barrier interval.

Moreover the discrete monitoring of the contract introduces an updating of the

solution u(x, t) at the monitoring dates tMl ∈M :

u(x, tMl ) = lim
ε→0+

u(x, tMl − ε) · χ[B
−
,B+]. (4)

3. Discontinuous Galerkin discretization

Let Th (h > 0) be a family of partitions of the closure Ω = [0, Smax] of the do-

main Ω into N closed mutually disjoint subintervals Ik = [xk−1, xk] with length hk :=

xk − xk−1. Then we set Th = {Ik, 1 ≤ k ≤ N} with spatial step h := max1≤k≤N hk

and call interval Ik an element. We additionally assume that the following conditions

are satisfied:

∃Cq ≥ 1 : hk ≤ Cqhk′ ∀ Ik, Ik′ ∈ Th sharing a node (local quasi-uniformity) (5)

∃ k1, k2 ∈ IN such that xk1 = B
−

and xk2 = B+ (barrier consistency) (6)

The DG method can handle different polynomial degrees over elements. There-

fore, we assign a positive integer pk as a local polynomial degree to each Ik ∈ Th.
Then we set the vector p = {pk, Ik ∈ Th}. Over the triangulation Th we define the

finite dimensional space of discontinuous piecewise polynomial functions:

Shp ≡ Shp(Ω, Th) = {v; v|Ik ∈ Ppk(Ik) ∀ Ik ∈ Th}, (7)

where Ppk(Ik) denotes the space of all polynomials of degree ≤ pk on Ik, Ik ∈ Th.
Consequently, the approximate solution of the continuous problem (1)–(4) is sought

in the space Shp.
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Let us denote v(x±

k ) = limε→0+ v(xk ± ε). Then we define the jump and average

of v at inner points xk of Ω by [v(xk)]=v(x−

k )−v(x
+
k ) and 〈v(xk)〉=

1
2

(

v(x−

k ) + v(x+
k )

)

,

respectively. We also extend the definition of jump and mean value for endpoints

of Ω, i.e. [v(x0)] = −v(x
+
0 ), 〈v(x0)〉 = v(x+

0 ), [v(xN)] = v(x−

N ) and 〈v(xN)〉 = v(x−

N).

Firstly, we recall the space semi-discrete DG scheme presented in [4] and [5]. To

this end we introduce the following bilinear forms:

aΘh (u, v) =
N−1
∑

k=0

∫ xk+1

xk

1

2
σ2x2 ∂u(x, t)

∂x
v′(x) dx−

N
∑

k=0

〈

1

2
σ2x2

k

∂u(xk, t)

∂x

〉

[v(xk)]

+Θ
N
∑

k=0

〈

1

2
σ2x2

k v
′(xk)

〉

[u(xk, t)], (8)

bh(u, v) =−
N−1
∑

k=0

∫ xk+1

xk

(σ2 − r)xu(x, t) v′(x) dx+
N
∑

k=0

H
(

u(x−

k , t), u(x
+
k , t)

)

[v(xk)], (9)

Jω
h (u, v) =

N
∑

k=0

ωk[u(xk, t)] [v(xk)]. (10)

The crucial item of the DG formulation is the treatment of the linear convection

and diffusion terms. For the convection form bh we treat its terms with the aid of

a numerical flux H , see [3]. The diffusion form aΘh includes stabilization terms which

are added to the formulation of the problem in order to guarantee the stability of the

numerical scheme. According to the value of parameter Θ, we speak of symmetric

(Θ = −1), incomplete (Θ = 0) or nonsymmetric (Θ = 1) variants. Furthermore, in

order to replace the inter-element discontinuities, the semi-discrete scheme is com-

pleted with the penalty Jω
h weighted by the penalty parameter function ωk defined

in the spirit of [4]. Let us note that the right-hand side term vanishes due to the

prescribed homogeneous Dirichlet boundary conditions in (2).

In order to simplify the notation we define the bilinear form:

BΘ
h (u, v) := aΘh (u, v) + bh(u, v) + αJω

h (u, v) + (2r − σ2)(u, v), α > 0, (11)

where (·, ·) denotes inner product and the forms aΘh (·, ·), bh(·, ·) and Jω
h (·, ·) are given

by (8), (9) and (10), respectively. The value of multiplicative constant α before the

penalty form Jω
h depends on the properties of diffusion term, see [4]. Finally, we end

up with the following DG formulation for the semi-discrete solution uh(t) ∈ Shp:

d

dt
(uh(t), vh) + B

Θ
h (uh(t), vh) = 0 ∀ vh ∈ Shp, ∀ t ∈ (0, T ), (12)

which represents an ODE system and due to bilinearity of form (11) we can easily

discretize (12) by the implicit Euler method. Let 0 = t0 < t1 < . . . < tr = T be

a partition of [0, T ] with time steps τl ≡ tl+1 − tl, l = 0, 1, . . . , r − 1. We define

the approximate solution of problem (1)–(4) as functions ul
h ≈ uh(tl), tl ∈ [0, T ],

l = 0, . . . , r − 1, satisfying the following numerical scheme:
(

ul+1
h , vh

)

+ τlB
Θ
h

(

ul+1
h , vh

)

=
(

ul
h, vh

)

∀ vh ∈ Shp, (13)

ul+1
h := ul+1

h · χ[B
−
,B+] ∀ tl+1 ∈M, (14)
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where u0
h is Shp-approximation of u0. The discrete problem (13) is equivalent to

a system of linear algebraic equations at each time level tl+1 ∈ [0, T ].

4. Mesh adaptation

In this section, we introduce an h-adaptive DG technique for the solution of

problem (1)–(4). Since we deal with nonstationary problems, it is suitable to use

adaptive mesh refinement during the computation in order to improve the numerical

solution and to optimize the number of degrees of freedom and computational cost,

consequently.

We start from a uniform coarse grid T0,h := Th and construct at each time instance

tl ∈ [0, T ] a new mesh Tl,h depending on the previous grid Tl−1,h through the following

h-adaptation operations: cutting (C) one element Ik into Ik1 and Ik2 and gluing (G)

two elements Ik1 and Ik2 together into Ik. The described adaptation process has to

comply with restrictions on a minimal admissible size of mesh step hmin, a maximal

admissible size of mesh step hmax, a maximal number of elements Nmax and keeping

of local quasi-uniformity (5) and barrier consistency (6), respectively.

The main idea of the proposed h-adaptive strategy is based on

• mesh refinement in domains with irregular solution (low regularity) or with

high value of residual estimate,

• mesh coarsening in domains with solution of high regularity and low value of

residual estimate.

The estimation of the regularity of the solution is essential for mesh refinement. The

presented approach is based on a measure of inter-element jumps arising from the

shock capturing techniques in hyperbolic problems, for a survey see [2].

We have employed the following element-wise regularity indicator:

gIk(uh) :=
1

h2pk+1
k





k
∑

i=k−1

[uh(xi)]
2



 , k = 1, . . . N, (15)

which recognizes the subdomains of Ω where the solution is smooth (gIk ≈ 0) from

the areas with discontinuities or with a very steep gradient (gIk ≫ 1).

The second key ingredient of the mesh refinement is the residual estimator which

is chosen proportionally to the strong formulation of the local residue from [1] as

rIk(uh) :=
∂uh

∂t
−

1

2
σ2x2∂

2uh

∂x2
− rx

∂uh

∂x
+ ruh, Ik ∈ Th. (16)

Then the local and global residual estimators of the approximate solution uh are

defined by resIk(uh) := ‖rIk‖L2(Ik) and resG(uh) :=
√

∑

Ik∈Th
res2Ik , respectively.

Our interest is to find a solution ˜uh ∈ Shp such that resG(˜uh) ≤ TOL, where
TOL > 0 is a given tolerance. In order to satisfy this condition we prescribe the

following stopping criterion for the h-adaptivity: resIk ≤
TOL
N

, ∀ Ik ∈ Th, which
guarantees the uniform distribution of the global residue.

The whole h-adaptation DG algorithm can be schematically written as
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1. let TOL > 0, 0 < hmin ≤ hmax and Nmax be given,

2. let B
−
, B+ ←→ T0h and Shp be set up, let u0 ←→ u0

h be given,

3. repeat time loop (until tl > T ) (l = 1, . . . , r)














































































(a) solve problem (13)–(14) on Tl−1,h =⇒ ul
h,

(b) evaluate indicators gIk(u
l
h), resIk(u

l
h), ∀ Ik ∈ Tl−1,h =⇒ resG(u

l
h),

(c) if resG(u
l
h) > TOL⇒ h-refinement,











(C) h-refine elements with resIk > TOL
N

,
(G) h-derefine elements with resIk < δ TOL

N
∧ gIk(u

l
h) ≈ 0,

(•) construct new mesh T new
h −→ Tl−1,h and space Shp, go to (a),

(d) if resG(u
l
h) ≤

TOL
β
⇒ h-coarsening,

{

(G) h-derefine elements with resIk < δ TOL
N
∧ gIk(u

l
h) ≈ 0,

(•) construct new mesh T new
h −→ Tl−1,h and space Shp, go to (a),

where β > 1 and δ ∈ (0, 1) are user-defined parameters, in our computations they

are typically chosen as β = 3.0 and δ = 0.1.

5. Numerical example

The presented numerical example represents the case of a discrete double barrier

call option with the expiration date T = 8
12

(e.g. 8 months) and the strike price

K = 6.0. The prescribed barriers are B
−

= 4.0, B+ = 8.0 and computational

domain was set as Ω = [0, 9]. The Black-Scholes model parameters were the risk-free

interest rate r = 1.0y−1 and volatility σ2 = 0.01y−1. The initial uniform mesh with

spatial step h = 0.25 was adaptively refined according to h-adaptation parameters

hmin = 10−3 and hmax = 0.5. The time step is τ = 1
120

and we consider monthly

monitoring. We carried out computations by piecewise quadratic approximations,

set Θ = 0 and used the restarted GMRES for the solving of linear systems (13).

Table 1 illustrates the development of the global residue and the number of ele-

ments during the computation in comparison with an adapted and uniform mesh.

One can easily observe that for approximately the same values of the global residue,

it is sufficient to use less elements in the adapted case than for the uniform one.

Figure 1 shows the corresponding isolines of option price and global residue in space-

time plot with well-resolved monthly monitoring.

6. Conclusion

We have dealt with the numerical solution of the discrete barrier option pricing

models, represented by the linear convection-diffusion-reaction equation. We have

presented DG approach together with simple h-adaptivity technique. Presented nu-

merical example illustrated the potency of the resulting scheme.
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time (bimonthly) resG (adapted) #Tlh
∗ resG (uniform) #Tlh

0.000000 19.960869 36 10.888578 120

0.166667 1.498133 178 1.459563 120

0.333333 0.615153 58 0.476494 120

0.500000 0.572154 44 0.475957 120

0.666667 0.119596 58 0.124287 120

Table 1: Comparison of h-adaptive and uniform approach w.r.t. resG; Tlh
∗ denotes

input meshes after monitoring without the updated h-refinement or h-coarsening.
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Figure 1: The isolines of price u (left) and corresponding global residue resG (right).
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Abstract

We present the method for determination of phycobilisomes diffusivity (diffusion

coefficient D) on thylakoid membrane from fluorescence recovery after photobleaching

(FRAP) experiments. This was usually done by analytical models consisting mainly

of a simple curve fitting procedure. However, analytical models need some unrealistic

conditions to be supposed. Our method, based on finite difference approximation

of the process governed by the Fickian diffusion equation and on the minimization

of an objective function representing the disparity between the measured and simu-

lated time-varying fluorescent particles concentration profiles, naturally accounts for

experimentally measured time-varying Dirichlet boundary conditions and can include

a reaction term as well. The result we get is the overall (time averaged) diffusion

coefficient D and the sequence of diffusivities Dj based on two successive fluorescence

profiles in j-th time interval. Due to the ill-posedness of our inverse problem, regu-

larization algorithms are implemented. On the synthetic example, we illustrate the

behaviour of solution depending on regularization parameter for different signal to

noise ratio.

1. Introduction

Fluorescence Recovery After Photobleaching (FRAP) measuring technique is

widely used since 1970s to study the organization and dynamics of many photo-

synthetic pigment-protein complexes in the photosynthetic membrane [16]. Later
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on, FRAP has been extended to the investigation of protein dynamics within the

living cells [14]. Using fluorescence confocal microscopy we get the spatio-temporal

FRAP images, and consequently the mobility of photosynthetic complexes in a na-

tive intact membrane, i.e. the diffusivity or diffusion coefficient D,1 is reconstructed

using either a closed form model or simulation based model [9, 6]. The FRAP images

are in general very noisy, with small signal to noise ratio (SNR), which requires an

adequate technique assuring the reliable results.2

Our study describes the development of a method aiming to determine the phyco-

bilisomes diffusivity on thylakoid membrane from FRAP experiments. As we know,

this is usually done by experimental curve fitting to the analytical (closed form)

models, see e.g. [1, 10, 7, 15]. However, the closed form models need some unre-

alistic assumptions. For example, C. W. Moulineaux et al. [10] have exploited the

rotational symmetry of the cells by bleaching a plane across the short axis of the cell

and reaching one-dimensional bleaching profiles along the long axis. Moreover, it was

supposed that: (i) x ∈ R, i.e. the infinite domain, (ii) the initial bleaching profile is

Gaussian, and (iii) the recovery is complete for t → ∞.3 The calculation of diffusion

coefficient D then resides in the weighted linear regression. The error analysis for

this method, i.e. how the noise corrupts the result, we treat in paper [13].

As the analytical approach has several limitation (e.g. restriction to the specific

cell geometry, bleach profile must be gaussian-like, full recovery is required, etc.),

we model the FRAP process by the Fickian diffusion equation with realistic initial

and boundary conditions instead. The estimation of diffusivity is further formulated

as a single parameter optimization problem consisting in the minimization of an

objective function representing the disparity between the experimental and simulated

time-varying concentration profiles.

The paper is organized as follows. The model of the process (i.e. reaction-

diffusion system) and the real data form we deal with are introduced in the second

section. In the third section we define the optimization problem, describe a regular-

ization method and its implementation. The results of the numerical simulations are

contained in the fourth section, while in the fifth section the paper is concluded.

1I. F. Sbalzarini in [14] distinguishes between the molecular diffusion constant and the apparent

diffusion constant; while the former is directly measured by single-molecule techniques, the latter is

determined by coarse-grained methods such as FRAP, averaging over a certain observation volume.
2Let us mention that the fluorescence confocal microscope allows the selection of a thin cross-

section of the sample by rejecting the information coming from the out-of-focus planes. However,

the small energy level emitted by the fluorophore and the amplification performed by the photon

detector introduces a measurement noise.
3Having y(x, t0) = y0,0 exp

−2x2

r02 , where r0 is the half-width of the bleach at time t0 = 0, the

solution y(x, t) of diffusion equation ∂y
∂t

= D ∂2y
∂x2 and the maximum depth at time t, i.e. y(0, t)

are as follows: y(x, t) =
y0,0r0√
r02+8Dt

exp −2x2

r02+8Dt
, y(0, t) =

y0,0r0√
r02+8Dt

. The calculation of diffusion

coefficient D then resides in the weighted linear regression: a plot of (
y0,0

y(0,t)
)2 against time should

give a straight line with the tangent 8D
r02 .
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2. Problem formulation

2.1. Reaction-diffusion system

FRAP (Fluorescence Recovery After Photobleaching) technique is based on appli-

cation of short, intense laser irradiation to a small target region of the cell that causes

irreversible loss in fluorescence in this area without any damage in intracellular struc-

tures. After the “bleach” (or “bleaching”), the observed recovery in fluorescence in

the “bleached area” reflects diffusion of fluorescence compounds from the area out-

side the bleach. For an arbitrary geometry of bleach spot and assuming (i) local

homogeneity, i.e. assuring that the concentration profile of fluorescent particles is

smooth, (ii) isotropy, i.e. diffusion coefficient is space-invariant, (iii) an unrestricted

supply of unbleached particles outside of the target region, i.e. assuring the com-

plete recovery,4 the unbleached particle concentration C as a function of spatial

coordinate ~r and time t is modeled with the following diffusion-reaction equation on

two-dimensional domain Ω:

∂C

∂t
−∇ · (D∇C) = R(C) , (1)

where D is the fluorescent particle diffusivity within the domain Ω and R(C) is

a reaction term.

The initial condition and time varying Dirichlet boundary conditions are:

C0 = f(~r, t0) in Ω, C(t) = g(~r, t) in ∂Ω × [t0, T ]. (2)

The reaction term R(C) is often viewed as negligible under assumptions that diffusion

of fluorescence compounds (proteins) is not restricted (e.g. by some binding to the

medium) and that photobleaching of these molecules during recovery is negligible.

In occasions where the binding reaction takes place, we can not reduce our process

to the one component diffusion equation, but the dynamics of binding reaction and

eventually the diffusion of bound complexes have to be modelled, see e.g. [15].

Consequently, if R(C) is neglected, Eq. (1) becomes the Fickian diffusion equation.

In contrast, under continual photobleaching during image acquisition, this reaction

term could be described as a first order reaction: R(C) = −kS C , where kS is a rate

constant describing bleaching during scanning [6].

It is of utmost importance to identify the relation between concentration of parti-

cles C and fluorescent signal φ. Although Eq. (1) and objective function J , cf. (10),
works with concentrations, in fact we measure the fluorescence intensity level and

not directly C. If the relation C = kFφ, where kF is a constant, holds, than we

can work with the measured signal without necessity of any recalculation. On the

contrary, if kF is space or time dependent, then we should design an experiment and

estimate this dependence.

4The recovery is not always complete. It is usually modelled by introducing some correction

term. More consistent method resides in the special time dependent Neumann boundary condition

in form of a saturation curve.
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Before bleaching, some number of so-called pre-bleach measurements are per-

formed. Notice that the pre-bleach profile Cpre represents a steady state constant

concentration profile which has to be gradually recovered for t → ∞. Thereafter,

based on the pre-bleach data φpre(e.g. its average value), we reach the coefficient kF
as follows: kF =

Cpre

φpre
. Consequently, in order to have experimental values Cexp repre-

senting the concentration profiles after bleaching, we have to divide the post-bleach

fluorescence signal by its pre-bleach value, as it is explained in the following.

2.2. One-dimensional one component diffusion equation

For a linear bleach spot perpendicular to a longer axis (let this axis be denoted

as r) and assuming local homogeneity and isotropy, the recovery of unbleached par-

ticle concentration as a function of spatial coordinate r and time t is modeled with

a linear, diffusion-reaction equation

∂C

∂t
−D

∂2C

∂r2
= R(C) . (3)

If we adopt the form of reaction term according to R(C) = −kS C and introduce

the dimensionless spatial coordinate x, the dimensionless diffusion coefficient p, the
dimensionless time τ and the dimensionless concentration y by

x :=
r

L
, p :=

D

D0
, τ := t

D0

L2
, y :=

C

Cpre

, (4)

where L is the length of our specimen in direction perpendicular to bleach spot,

D0 is a constant with some characteristic value (unit: m2s−1), and Cpre is a pre-

bleach concentration of C, we finally obtain the following form of dimensionless

diffusion-reaction equation on one-dimensional domain, i.e. for x ∈ [0, 1]

∂y

∂τ
− p

∂2y

∂x2
= −

kSL
2

D0
y . (5)

The initial condition and time varying Dirichlet boundary conditions are:

y(x, τ0) = f(x), x ∈ [0, 1], (6)

y(0, τ) = g0(τ), y(1, τ) = g1(τ), τ ≥ τ0. (7)

2.3. Experimentally measured data

Based on FRAP experiments, we have a 2D dataset in form of a table with

experimental values yexp(ri, tj) (already normalized), where (N +1) rows correspond

to the number of spatial points where the values are measured, and (m∗ + M + 1)

columns correspond to the number of discrete time points, i.e. time instant when

the data were measured:

yexp(ri, tj), i = 0 . . . N, j = −m∗ . . .M. (8)
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This can be read by columns as the concentration profiles (along r axis) inm∗+M+1

discrete time points, wherem∗ corresponds to the number of columns with pre-bleach

data containing the information about the steady state and optical distortion, and

M + 1 columns of post-bleach data contain the information about the transport of

unbleached particles (due to the diffusion process) through the boundary of bleach

spot (our computational domain Ω).

The row data are further re-scaled in order to be in the following form:

yexp(xi, τj), i = 0 . . . n, j = −m∗ . . .m, (9)

where space interval between first and last measurement points we take into account

is chosen as [a, b]. Thus, L = b − a is the length of space interval in physical units,

i.e. [m], chosen by the person performing the measurment. The re-scaled dimen-

sionless space interval is again x ∈ [0, 1] and the re-scaled distance between two

space measurements is h = 1
n
. Time interval between two measurements is T in [s],

re-scaled dimensionless time interval is τt = TD0

L2 . For the further calculation, the

number of post-bleach measurements can be also reduced, i.e. let m ≤ M . Recall

that τ0 corresponds to the first post-bleach measurement, and x0 = 0, xn = 1. Con-

sequently, yexp(xi, τ0), i = 0 . . . n, represent the initial condition and yexp(0, τj) and
yexp(1, τj), j = 0 . . .m, the left and right Dirichlet boundary conditions, respectively.

Recall that due to the measurement noise both the respective j − profiles
yexp(xi, τj), i = 0 . . . n, and the initial and boundary conditions cannot be sim-

ply approximated by a smooth function. The forthcoming task is to analyze the

measurement noise from real data and to treat it correctly, i.e. to use it for the

setting of the regularization parameter, see the following section 3.

Figure 1: Left: Experimental data from FRAP experiments with red algae Por-

phyridium cruentum describing the phycobilisomes mobility on thylakoid mem-

brane [7]. Right: Synthetic data used for numerical experiments. The y-axis rep-

resents the dimensionless concentration and x-axis the spatial coordinate, both in

arbitrary units.

104



3. Inverse problem and its regularization

3.1. Determination of diffusivity as a parameter estimation problem

The problem of autofluorescence compound (e.g. phycobilisomes) diffusivity de-

termination based on time series of FRAP experimental data will be further for-

mulated as a parameter estimation problem. We construct an objective function J
representing the disparity between the experimental and simulated time-varying con-

centration profiles, and then within a suitable method we look for such a value p
minimizing J . The usual form of an objective function is the sum of squared differ-

ences between the experimentally measured and numerically simulated time-varying

concentration profiles:

J(p) =
m
∑

j=0

n
∑

i=0

[yexp(xi, τj)− ysim(xi, τj)]
2 , (10)

where ysim(xi, τj) are simulated values resulting from the solution of PDE (5) with the

initial and boundary conditions (6)-(7) for the known parameter p, which is now the

independent variable, i.e. ysim = ysim(p) . For the sake of clarity we further neglect

the other parameter concerning the reaction term, i.e. we neglect the influence of

bleaching during scanning, i.e. we put kSL
2

D0

= 0.

Taking into account the biological reality residing in possible time dependence of

phycobilisomes diffusivity, we further consider two cases:

1. First, we can take both sums for i and j in (10) together. In this case, the

scalar p∗ is a result of a minimization problem p∗ = argminp J(p) .

2. Secondly, we can consider each j-th time instant separately. In this case, the

m solutions p∗1, . . . , p
∗

m with values J1, . . . , Jm correspond to each minimization

problem for fixed j in sum (10), i.e. pj
∗ = argminpj Jj(pj) , where Jj(pj) =

∑n
i=0 [yexp(xi, τj)− ysim(xi, τj , pj)]

2
, and we have a “dynamics” of diffusivity

p evolution.

Our problem is ill-posed in the sense that the solution, i.e. the diffusion coef-

ficients Dj = pj D0, j = 1, . . . , m, does not depend continuously on the data and

may be very sensitive to noise. This led us to the necessity of some stabilizing pro-

cedure5 and the formulation of another cost function by adding the regularization

term α||p − preg||
2 to (10), see [3, 5, 17]. Here α ≥ 0 is a regularization parameter

and preg is an expected regularized value. Doing this, we use an apriori information

about the solution, in other words we assume that p ≡ p(x, τ) is almost constant

with respect to x and τ and regularization term moves the minimum of functional

J(p) =
∑m

j=1 Jj(pj), i.e. the solutions p
∗

1, . . . , p
∗

m towards a constant. In case α → ∞

5The “naive approach” consisting in the hope that the typical oscillation of pj
∗ can be suppressed

by removing the noise from data, e.g. by smoothing using the Fourier transformation, was treated

in [12] and further abandoned by the authors.
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we obtain p∗j = preg, j = 1, . . . , m. Note that taking α = 0, the regularization term

vanishes, i.e. the functional (10) is the special case of a more general functional, see

the next section.

3.2. Three types of optimization problem

Define the cost functions

Jj(pj , α) =
n
∑

i=0

[yexp(xi, τj)− ysim(xi, τj, pj)]
2
+α (pj − preg)

2, j = 1, . . . , m, (11)

J(p1, . . . , pm, α) =
m
∑

j=1

Jj(pj, α). (12)

Three types of a one-dimensional optimization problem are considered:

1. Scalar p is a solution when taking both sums for i and j in together:

p∗ = argmin
p

m
∑

j=1

n
∑

i=0

[yexp(xi, τj)− ysim(xi, τj, p)]
2

(13)

2. Each jth time instant separately without regularization (α = 0):

p∗j = argmin
pj

n
∑

i=0

[yexp(xi, τj)− ysim(xi, τj, pj)]
2

(14)

3. Each jth time instant separately using so-called Tikhonov regularization:

p∗j(α) = arg min
pj ,preg

{

n
∑

i=0

[yexp(xi, τj)− ysim(xi, τj , pj)]
2
+ α (pj − preg)

2

}

(15)

We use a basic optimization method leading to values p∗, p∗j , p∗j (α) that minimize

respective cost functional. Values p∗j , p∗j(α) are approximations of diffusion coeffi-

cients. We briefly describe a basic optimization method without loss of generality

for the case of solving problem (13).

Basic optimization method is an iteration process starting from an initial point p(0)

and generating a sequence of iterates p(1), p(2), . . . leading to a value p∗ such that

p(l+1) = p(l) + σ(l)d(l),

where

• d(l) is a direction vector determined on the basis of values

p(j), J(p(j)), J ′(p(j)), J ′′(p(j)), 0 ≤ j ≤ l,

• σ(l) > 0 is a step-length determined on the basis of behavior of the function J
in the neighborhood of p(l).

There exist several methods for determination of direction vector and step-length

selection (line-search or trust-region method) described e.g. in [11]. The trust-

region method, implemented in the system for universal functional optimization [8],

was used in our numerical test described in the next section.
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3.3. Implementation

In this subsection we describe how we implemented both the direct problem, i.e.

solution of problem (5)-(7), and the parameter estimation problem, i.e. minimization

of a respective functional J .
In order to compute a function value Jj(p

(l)
j , α) in (12) for a given p

(l)
j in the

lth iteration, we need to know both

• the experimental values yexp(xi, τj), i = 0 . . . n, j = 0 . . .m,

• the simulated values ysim(xi, τj, p
(l)
j ), i = 0 . . . n, j = 0 . . .m.

It means that in each lth iteration we need to solve the problem (we use the notation

ysim ≡ y, p
(l)
j ≡ p for simplicity)

∂y

∂τ
− p

∂2y

∂x2
= 0 , (16)

with the initial and boundary conditions defined by the experimental data

y(x, τ0, p) = yexp(x, τ0) for x ∈ [0, 1], (17)

y(0, τ, p) = yexp(0, τ), y(1, τ, p) = yexp(1, τ) for τ ≥ τ0. (18)

Problem (16)-(18) for simulated data y(xi, τj, pj) was solved numerically using

two following finite difference schemes [2] for uniformly distributed nodes with the

space steplength ∆h and the variable time steplength ∆τ :

• The explicit scheme of order ∆τ +∆h2:

yi,j = βyi−1,j−1 + (1− 2β)yi,j−1 + βyi+1,j−1

• The Crank-Nicholson implicit (CN) scheme of order ∆τ 2 +∆h2:

−
β

2
yi−1,j + (1 + β)yi,j −

β

2
yi+1,j =

β

2
yi−1,j−1 + (1− β)yi,j−1 +

β

2
yi+1,j−1

Here β = ∆τ
∆h2 p and yi,j ≡ y(xi, τj , pj) are the computed values in nodes that

enter the function J as values ysim(xi, τj , pj). Recall that for the explicit scheme the

condition β ≤ 1/2 must hold.

Concerning the steplengths used in the numerical schemes, we set the space

steplength to be ∆h = 1/n (smaller splitting ∆h = 1/(κsn) with κs ∈ N can

also be considered). The time steplength ∆τ is variable but should be ideally of the

same order as ∆h2 (or ∆h in the CN scheme) and in the explicit scheme has to fulfill

the relation ∆τ ≤ ∆h2

2p
. In order to get from the (j − 1)-th time instant to the j-th,

we need to perform κt = ⌈ TD0

L2∆τ
⌉ substeps of the above chosen scheme, where κt ∈ N

is the smallest integer that is not less than TD0

L2∆τ
.
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4. Numerical simulation results

We have performed numerical experiments with the synthetic data corrupted by

the 10% Gaussian noise with n = 51, m = 19 and consider each j-th time instant

separately, i.e. j is fixed in sum (12). We report the results using the CN scheme

(they are in fact independent of the used scheme) and illustrate the difficulties caused

by the ill-posedness of our problem.

In Figure 2 we can see big jumps in computed approximated values p∗j , j=1, . . . , m
when using no regularization (α = 0). In contrast, regularization technique (α > 0)

seems to cope with ill-posedness quite well. The solutions p∗1(α), . . . , p
∗

m(α) become

smoother and tend to the estimated regularized value preg for larger α (larger weight

of the regularization term). The regularized value corresponds to the exact solution

1/π ≈ 0.3183.

Figure 2: Dimensionless diffusivities p∗j =
Dj

D0

: Values p∗1(α), . . . , p
∗

19(α).

When using this approach, the variance of solutions p∗j (α) tends to zero for

α → ∞, i.e. p∗j(α) → preg ∀j = 1, . . . , m, but the function values J(p∗, α), see (12),

become larger (however there is a supremum). This fact is demonstrated in Fig-

ure 3, where we have used relative deviation from the average value (coefficient of

variation6) as a solution norm:

cv(α) =
1

m øp∗j (α)

√

√

√

√

m
∑

j=1

[p∗j (α)− øp∗j(α)]
2. (19)

A proper choice of the regularization parameter α balances the above types of the

curves. One of the possible criteria how to choose a proper α which is in some sense

6The coefficient of variation (cv) is defined as the ratio of the standard deviation to the mean

cv = σ
µ
, which is the inverse of the signal-to-noise ratio.
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Figure 3: Values J(p∗, α)− J(p∗, 0) are increasing, values cv(α) are decreasing.

Figure 4: The L-curve – values J(p∗, α), see (12), against values cv(α), see (19).

optimal is called the L-curve. We plot the value of objective function J against the

value cv(α). The L-curve-optimal parameter α∗ usually corresponds to the point with

maximal curvature. In Figure 4, we plot the L-curve resulting from our numerical

tests for the 10% Gaussian noise, i.e. for cv = 0.1. We see that for our “FRAP

problem” and a particular noise level, there is not a sharp corner. Furthermore,

the question of optimal value of α∗ may also depend on what the user expects or

prefers, if rather small function value J(p∗, α) or more constant solutions p∗1, . . . , p
∗

m,

i.e. small value cv(α), see e.g. [4].
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5. Conclusions

The purpose of this paper was to present the real problem residing in the estima-

tion of diffusivity of phycobilisomes on thylakoid membrane based on spatio-temporal

FRAP images. While the state-of-the-art methods in FRAP measurement of photo-

synthetic complexes mobility are usually based on the curve fitting to an analytical

(closed form) models, which need some unrealistic conditions to be supposed, our

method is based on finite difference approximation of diffusion process and on the

minimization of an objective function evaluating both the disparity between the ex-

perimental and simulated time-varying concentration profiles and the smoothness of

the time evolution of diffusivity. This approach naturally takes into account the time-

dependent Dirichlet boundary conditions and can include also a reaction term (e.g.

modeling the low level bleaching during scanning) and the time varying fluorescence

signal as well.

Our program CA-FRAP 4.0 is actually under testing, however, for the previously

known diffusion coefficient and the synthetic data corrupted by the Gaussian noise

it computes satisfactory results. Afterward, we determined the diffusivities for the

real data of FRAP measurements (with the red algae Porphyridium cruentum). The

range of result 10−15m2s−1 (10−3µm2s−1) is in agreement with reference values.
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Abstract

This work deals with the numerical solution of generalized Newtonian and

Oldroyd-B fluids flow. The governing system of equations is based on the system

of balance laws for mass and momentum for incompressible laminar viscous and vis-

coelastic fluids. Two different definition of the stress tensor are considered. For

viscous case Newtonian model is used. For the viscoelastic case Oldroyd-B model is

tested. Both presented models can be generalized. In this case the viscosity is defined

as a shear rate dependent viscosity function µ(γ̇). One of the most frequently used

shear-thinning models is a cross model. Numerical solution of the described models

is based on cell-centered finite volume method using explicit Runge Kutta time inte-

gration. The numerical results of generalized Newtonian and generalized Oldroyd-B

fluids flow obtained by this method are presented and compared.

1. Mathematical model

In order to simulate the fluids flow in the channel the system of balance laws of

mass and momentum for incompressible fluids are considered, [1], [4]:

div u = 0 (1)

ρ
∂u

∂t
+ ρ(u.∇)u = −∇P + div T (2)

where P is the pressure, ρ is the constant density, u is the velocity vector,

u=(u, v, w)T . The symbol T represents the stress tensor.

1.1. Stress tensor

In this work the different definition of the stress tensor are used.

In the case of viscous fluids the used model corresponding to Newtonian fluid is

Newtonian model:

T = 2µD (3)
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where µ is dynamic viscosity and tensor D is symmetric part of the velocity gradient

defined by the relation D = 1
2
(∇u+∇u

T ).

If viscoelastic fluids are considered Maxwell model as the simplest viscoelastic

model is used:

T + λ1
δT

δt
= 2µD (4)

where λ1 has dimension of time and denotes the relaxation time. The symbol δ
δt

represents upper convected derivative (see (8))

By combination of these two models the behaviour of mixture of viscous and

viscoelastic fluids can be described. Such a model is called Oldroyd-B model and it

has the form

T+ λ1
δT

δt
= 2µ

(

D+ λ2
δD

δt

)

(5)

the parameters λ1, λ2 are relaxation and retardation time.

The stress tensor T can be decomposed to the Newtonian part Ts and viscoelastic

part Te (T = Ts + Te) and

Ts = 2µsD, Te + λ1
δTe

δt
= 2µeD, (6)

where

λ2

λ1
=

µs

µs + µe

, µ = µs + µe. (7)

The upper convected derivative δ
δt
is defined (for general tensor M) by the relation

(see [2])
δM

δt
=

∂M

∂t
+ (u.∇)M− (WM−MW)− (DM+MD) (8)

where D is symmetric part of the velocity gradient

D =
1

2
(∇u+∇u

T ) =
1

2





2ux uy + vx uz + wx

uy + vx 2vy vz + wy

wx + uz wy + vz 2wz



 (9)

and W is antisymmetric part of the velocity gradient

W =
1

2
(∇u−∇u

T ) =
1

2





0 uy − vx uz − wx

vx − uy 0 vz − wy

wx − uz wy − vz 0



 . (10)

The governing system (1), (2) of equations is completed by the equation for the

viscoelastic part of the stress tensor

∂Te

∂t
+ (u.∇)Te =

2µe

λ1

D−
1

λ1

Te + (WTe − TeW) + (DTe + TeD). (11)
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Both models could be generalized. In this case the viscosity µ is no more constant,

but is defined by viscosity function according to the cross model (for more details

see [11])

µ(γ̇) = µ
∞
+

µ0 − µ
∞

(1 + (λγ̇)b)a
(12)

where

γ̇ = 2

√

1

2
tr D2 (13)

µ0 = 1.6 · 10−1Pa · s µ
∞

= 3.6 · 10−3Pa · s
a = 1.23, b = 0.64 λ = 8.2s.

2. Numerical solution

In this work the steady state solution is considered. In this case an artificial

compressibility method can be applied. It means that the continuity equation is

completed by the time derivative of the pressure in the form (for more details see

e.g. [3], [8]):
1

β2

∂p

∂t
+ div u = 0, β ∈ R

+. (14)

The system of equations (including the modified continuity equation) could be

rewritten in the conservative form.

R̃βWt + F c
x +Gc

y +Hc
z = F v

x +Gv
y +Hv

z + S, R̃β = diag(
1

β2
, 1, · · · , 1) (15)

where W is the vector of unknowns, F c, Gc, Hc are inviscid fluxes, F v, Gv, Hv are

viscous fluxes, and the source term S.
The following special parameters settings related to four specific models will be

used in our numerical simulation:

Newtonian µ(γ̇) = µs = const. Te ≡ 0

Generalized Newtonian µ(γ̇) Te ≡ 0

Oldroyd-B µ(γ̇) = µs = const. Te

Generalized Oldroyd-B µ(γ̇) Te

The (15) is discretized in space by the cell-centered finite volume method (see [7])

and the arising system of ODEs is integrated in time by the explicit multistage

Runge–Kutta scheme (see [8], [10], [11]).

2.1. Boundary conditions

The flow is modelled in a bounded computational domain where a boundary is

divided into three mutually disjoint parts: a solid wall, an outlet and an inlet. At the

inlet Dirichlet boundary condition for velocity vector is used and for a pressure and

the stress tensor Neumann boundary condition is used. At the outlet the pressure
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value is given and for the velocity vector and the stress tensor Neumann boundary

condition is used. The homogeneous Dirichlet boundary condition for the velocity

vector is used on the wall. For the pressure and stress tensor Neumann boundary

condition is considered.

3. Numerical results

This section deals with the comparison of the numerical results of Newtonian

and Oldroyd-B fluids. Numerical tests are performed in an idealized stenosed vessel.

The stenosed vessel is assumed to be three-dimensional with circular cross-section.

Figure 3 shows the shape of the tested domain. The computational domain is dis-

cretized using a structured, wall fitted mesh with hexahedral cells and uniform axial

cell spacing. The similar numerical results can be found in [1], [2].

2R

2R R 2R 5R

10R

R

(a) Newtonian
(b) Generalized Newtonian

Figure 1: Structure of the computational domain.

The following model parameters are:

µe = 4.0 · 10−4Pa · s µs = 3.6 · 10−3Pa · s
λ1 = 0.06s λ2 = 0.054s

U0 = 0.0615m · s−1 L0 = 2R = 0.0062m
µ0 = µ = µs + µe ρ = 1050kg ·m−3

Note that the fluid motion can be characterized by parameters: Reynolds number

and Weissenberg number. Weissenberg number is proportional to the relaxation time

of the fluid. These special data corresponds to Reynolds and Weissenberg numbers:

Re =
ρU0L0

µ0
= 100, We =

λ1U0

L0
= 0.6 (16)

In Figure 2 the comparison of the axial velocity isolines is presented. To empha-

size the flow separation behind the stenosis the regions of reversal flow (with respect

to axial direction) are marked with white color.

Pressure and velocity distribution along the axis for both tested fluids models is

shown in Figure 3. By simple observation one can conclude that the main effect of

the Oldroyd-B fluids behavior is visible mainly in the recirculation zone.
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(a) Newtonian (b) Generalized Newtonian

(c) Oldroyd-B (d) Generalized Oldroyd-B

Figure 2: Axial velocity isolines for generalized Oldroyd-B fluids.
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(a) pressure

x

u

0 0.01 0.02 0.03

0.15
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0.3

(b) axial velocity

Figure 3: Pressure and axial velocity distribution along the central axis of the chan-

nel.

4. Conclusions

Newtonian and Oldroyd-B models with their generalized modification have been

considered for numerical simulation of fluids flow in the idealized axisymmetric steno-

sis. The cell-centered finite volume solver for incompressible laminar viscous and

viscoelastic fluids flow has been described. For time integration the explicit Runge–

Kutta method was considered. The numerical results obtained by this method are

presented. The differences between these tested fluids are given mainly in the separa-

tion region. These results clearly show that for shear-thinning flows the recirculation

zone becomes shorter. This could be explained by the specific choice of the charac-

teristic viscosity µ
∞

for the reference Newtonian and (non-generalized) Oldroyd-B

solution.

116



Acknowledgements

This work was partly supported by the grant GACR P201/11/1304 and GACR

201/09/0917.

References

[1] Bodnar, T., Sequeira, A., and Prosi, M.: On the shear-thinning and viscoelastic

effects of blood flow under various flow rates. Appl. Math. Comput. 217 (2011),

5055–5067.

[2] Bodnar, T. and Sequeira, A.: Numerical study of the significance of the

non-Newtonian nature of blood in steady flow through stenosed vessel. In:

R. Rannacher, A. Sequeira (Eds.), Advances in Mathematical Fluid Mechanics,

pp. 83–104. Springer-Verlag, 2010.

[3] Chorin, A. J.: A numerical method for solving incompressible viscous flow prob-

lem. J. Comput. Phys. 135 (1967) 118–125.
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Abstract

This contribution contains a description and comparison of two methods applied to exposure

optimization applied to moulding process in the automotive industry.

1. Introduction

Consider an aluminium shape weighting approximately 300 kg. This shape should

be uniformly warmed to 270oC by approximately 100 heating lamps of the same power.

Every lamp is defined by the coordinates of its endpoints A, B and the lighting direction u
(9 parameters). All the lamps have the same length d. The shape surface is defined by

using approximately 10000 plane elements. Every plane element is represented by the

coordinates of its center T and its outer normal v (6 parameters). The initial coordinates

of the lamps are given. To obtain a uniform exposure of the surface to the heat radiation,

we optimize the lamp coordinates.

2. Formulation of a constrained optimization problem

2.1. Equations for the exposure of a plane element by a lamp

Let xT = (xT
1 , x

T
2 , x

T
3 ) be the center of a plane element, xN = (xN

1 , x
N
2 , x

N
3 ) be its

outer normal, xA = (xA
1 , x

A
2 , x

A
3 ), x

B = (xB
1 , x

B
2 , x

B
3 ) be the endpoints of the lamp and

xS = (xS
1 , x

S
2 , x

S
3 ) be the lighting direction of the lamp. We also denote v = −xN , u = xS

and use the following constraints

3
∑

i=1

(xS
i )

2 = 1,

3
∑

i=1

xS
i (x

B
i − xA

i ) = 0,

3
∑

i=1

(xB
i − xA

i )
2 = d2, (1)

where d is the length of the lamp. The first constraint ensures the unit length of vector xS,

the second its orthogonality to the axis of the lamp, and the third stabilizes the length of

the lamp.
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The lamp is a linear body of the length d, consisting of p lighting elements of lengths

dk = d/p, 1 ≤ k ≤ p. The connecting line between the center of the lighting element and

the center of the plane element is expressed as

wk = xT − (1− λk)x
A − λkx

B, λk =
2k − 1

2p
, (2)

where 1 ≤ k ≤ p. The exposure I of the selected plane element by the particular lamp is

given by the formula

I =

p
∑

k=1

Ik, Ik =

(

3αk +
1

2

√

1− α2
k

)

βk

‖wk‖2
dk, (3)

where

αk =
uTwk

‖u‖‖wk‖
= ũT w̃k, βk =

vTwk

‖v‖‖wk‖
= ṽT w̃k,

and

ũ = u/‖u‖, ṽ = v/‖v‖, w̃k = wk/‖wk‖

(the expression for Ik has been obtained by measurements). Analytical expressions for the

derivatives of the exposure I with respect to the elements of vectors xA, xB, xS (elements

of the vectors xT , xN are constants, since the heated surface is fixed) have the form

∂I

∂xA
i

=

p
∑

k=1

∂Ik
∂xA

i

= −

p
∑

k=1

(1− λk)
∂Ik
∂wik

,

∂I

∂xB
i

=

p
∑

k=1

∂Ik
∂xB

i

= −

p
∑

k=1

λk

∂Ik
∂wik

∂I

∂xS
i

=

p
∑

k=1

∂Ik
∂xS

i

=

p
∑

k=1

∂Ik
∂ui

,

so they can be easily computed from gradients

∇uIk =

(

3−
1

2

αk
√

1− α2
k

)

βkdk
‖wk‖2

∇uαk,

∇wk
Ik =

(

3−
1

2

αk
√

1− α2
k

)

βkdk
‖wk‖2

∇wk
αk

+

(

3αk +
1

2

√

1− α2
k

)(

dk
‖wk‖2

∇wk
βk − 2

βkdk
‖wk‖4

wk

)

.
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Furthermore, one has

∇uαk =
wk

‖u‖‖wk‖
−

uTwk

‖u‖‖wk‖

u

‖u‖2
=

1

‖u‖
(w̃k − αkũ),

∇wk
αk =

u

‖u‖‖wk‖
−

uTwk

‖u‖‖wk‖

wk

‖wk‖2
=

1

‖wk‖
(ũ− αkw̃k),

∇wk
βk =

v

‖v‖‖wk‖
−

vTwk

‖v‖‖wk‖

wk

‖wk‖2
=

1

‖wk‖
(ṽ − βkw̃k),

and after substitution we obtain

∇uIk =

(

3−
1

2

αk
√

1− α2
k

)

βkdk
‖u‖‖wk‖2

(w̃k − αkũ) (4)

∇wk
Ik =

(

3−
1

2

αk
√

1− α2
k

)

βkdk
‖wk‖3

(ũ− αkw̃k)

+

(

3αk +
1

2

√

1− α2
k

)

dk
‖wk‖3

(ṽ − 3βkw̃k). (5)

It is not necessary to known the elements of vectors u, v and wk, 1 ≤ k ≤ p. We use only

their Euclidean norms and the elements of normalized vectors ũ, ṽ and w̃k, 1 ≤ k ≤ p, in
our numerical algorithm.

2.2. Objective function and constraints for the uniform exposure

We have ne plane elements and nl lamps. Every plane element can be exposed by

several lamps. Let Lj be a set of indices of the lamps that expose the jth plane element.

Choose 1 ≤ j ≤ ne and l ∈ Lj . If we denote Ijl the exposure of the jth element by the lth
lamp, (this value corresponds to the value I from the previous subsection), then the total

exposure Ij of the jth element is given by the formula

Ij =
∑

l∈Lj

Ijl.

The derivatives of Ij are computed by the formulas

∂Ij
∂xA

il

=
∂Ijl
∂xA

il

,
∂Ij
∂xB

il

=
∂Ijl
∂xB

il

,
∂Ij
∂xS

il

=
∂Ijl
∂xS

il

, l ∈ Lj,

∂Ij
∂xA

il

= 0,
∂Ij
∂xA

il

= 0,
∂Ij
∂xA

il

= 0, l 6∈ Lj,

where we substitute the previously defined quantities. Let I be the prescribed value of the

exposure (the same for all elements of the shape surface). Then

F (x) =
1

2

ne
∑

j=1

(Ij − I)2, (6)
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where vector x has elements xA
1l, x

A
2l, x

A
3l, x

B
1l, x

B
2l, x

B
3l, x

S
1l, x

S
2l, x

S
3l, 1 ≤ l ≤ nl (nine for

every lamp). One has

∂F (x)

∂xA
il

=

ne
∑

j=1

(Ij − I)
∂Ij
∂xA

il

,
∂F (x)

∂xB
il

=

ne
∑

j=1

(Ij − I)
∂Ij
∂xB

il

,
∂F (x)

∂xS
il

=

ne
∑

j=1

(Ij − I)
∂Ij
∂xS

il

,

where we substitute quantities computed in the previous relations. The prescribed value

of the exposure is determined by the initial positions of the lamps through the formula

I =
1

ne

ne
∑

j=1

Ij.

The objective function F (x) is minimized in the feasible region given by the equality

constraints (1) (three constraints for every lamp). Computation of derivatives of these

constraints with respect to the elements of vector x is easy. All constraints are sparse, so

the memory size and the number of arithmetic operations are not large.

The described problem consists in the minimization of a sum of squares with respect

to nonlinear equality constraints. The number of partial functions in the sum of squares is

ne ∼ 10000 (the number of the plane elements). The number of variables is 9nl ∼ 900 (nine

for every lamp). The Hessian matrix of the objective function is not sparse. The number

of nonlinear equality constraints is 3nl ∼ 300 (three for every lamp). The Jacobian matrix

of nonlinear equality constraints is sparse. These facts have an influence on the choice of

the numerical method. We have used the recursive quadratic programming method with

iterative solution of linear KKT system by indefinitely preconditioned conjugate gradient

method (see [3]). This method uses partial derivatives derived above.

3. Formulation of an unconstrained optimization problem

In this section, we use constraints (1) to eliminate vector u = xS from the formula (3).

For this purpose we assume that the basis of the warmed shape lies in the horizontal plane,

the lamps are placed over the heated surface and the lighting directions of the lamps are

mostly perpendicular to the basis of the shape. This assumption is not very restrictive and

results obtained in this way are comparable with those obtained by approach used in the

previous section.

Let y be a vector parallel to vector xB − xA. Then we can write xB − xA = (y/‖y‖)d
and wk = xT − xA − λk(y/‖y‖)d, 1 ≤ k ≤ p, where d = ‖xB − xA‖ (see (2)). By our

assumption, the angle between vector u = xS , which is perpendicular to vector y, and
the normal e = (0, 0,−1) is minimal. If the norm of vector u is unit, it can be uniquely

determined from vectors y and e.

Theorem 1 Vector

u =
e + λy

√

eT (e + λy)
, λ = −

eTy

yTy
.

is the solution of the optimization problem

Maximize eTu subject to yTu = 0, uTu = 1.
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Since the length of vector u can be arbitrary, we put

u = e−
eTy

yTy
y = e− eT ỹỹ,

where ỹ = y/‖y‖ (vector e = (0, 0,−1) has the unit norm). To compute the gradient of the

objective function, we need the transposed Jacobian matrices of vectors u and wk (with

respect to y), which we denote ∇yu and ∇ywk.

Theorem 2 One has

∇yu =

(

2
y yT

yTy
− I

)

eTy

yTy
−

e yT

yTy
=

1

‖y‖

(

(2 ỹỹT − I) eT ỹ − e ỹT
)

∇ywk =
λkd

‖y‖

(

y yT

yTy
− I

)

=
λkd

‖y‖

(

ỹỹT − I
)

The exposure (3) now depends on vectors x = xA and y (then xB = xA + (y/‖y‖)d
and vector xS = u is obtained by Theorem 1). Analytical expressions for gradients of the

exposure I have the form

∇xI =

p
∑

k=1

∇xIk = −

p
∑

k=1

∇wk
Ik, ∇yI =

p
∑

k=1

∇yIk =

p
∑

k=1

(∇yu∇uIk +∇ywk∇wk
Ik),

where gradients ∇uIk and ∇wk
Ik are computed by formulas (4) and (5). Note that using

Theorem 2 we can write

∇yu∇uIk +∇ywk∇wk
Ik = −

1

‖y‖
(γe(∇uIk − 2γuỹ) + γue+ λkd(∇wk

Ik − γwk
ỹ)) ,

where γe = ỹTe, γu = ỹT∇uIk and γwk
= ỹT∇wk

Ik.
Analogously to the previous section, we minimize the sum of squares (6), but now

without constraints. The number of variables is 6nl ∼ 600 (six for every lamp). The

Hessian matrix of the objective function is not sparse. This fact have an influence to

the choice of the numerical method. We have used the combination of the Gauss-Newton

method and the BFGS variable metric method, which is described in [2]. This combination

uses partial derivatives derived above.

4. Numerical comparison

The purpose if this section is to show that the elimination of constraints and the solu-

tion of the unconstrained optimization problem significantly increase the efficiency of the

computation. To demonstrate this fact, we have used four test problems L1–L4 introduced

in [1]. The following table contains the results corresponding to the two approaches de-

scribed in the previous sections. Here NIT and NFV are the numbers of iterations and

function evaluations, F0 and F are the initial and the final values of the objective func-

tion. Computational time is given in seconds. The ∗ symbol means that 10000 function

evaluations did not suffice for obtaining the solution. The results were obtained by the

interactive system for universal functional optimization UFO described in [4].

The following figure demonstrates the solution of problem L1.
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Method with constraints Method without constraints

Problem F0 NIT NFV Time F NIT NFV Time F

L1 169.53 1125 4653 396.14 27.68 74 165 18.67 29.16

L2 198.14 712 2456 218.68 31.22 83 186 21.22 32.75

L3 22.50 382 812 118.79 14.25 57 126 20.50 12.02

L4 11.86 1094 10007 742.15 2.03 ∗ 43 98 9.71 1.27

Table 1: Comparison of two approaches for the heat exposure optimization.

Figure 1: Initial (left) and final (right) positions of the lamps.
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Abstract

Optical diffraction for periodical interface belongs to relatively fewer exploited

application of boundary integral equations method. Our contribution presents the

formulation of diffraction problem based on vector tangential fields, for which the

periodical Green function of Helmholtz equation is of key importance. There are dis-

cussed properties of obtained boundary operators with singular kernel and a numerical

implementation is proposed.

1. Introduction

Development of optical micro- and nanostructures with periodical ordering takes

important place in many branches of integrated optics or nano-technology. The geo-

metrical and material optimization of the sensors, switching elements and many other

devices depends on the accurate control of their parameters. Besides less or more

complicated experiments, theoretical studies are carried out including mathematical

models of electromagnetic wave interaction with geometrically or material-wise mo-

dulated media. Generally, these models consist in the solving of Maxwell equations

with appropriate boundary conditions. Diffraction of optical wave on an interface

between two different media is one of frequently solved problem, where the rigorous

choice of theoretical approach plays important role.

In the last two decades, there were published numerous works treating of optical

diffraction in periodical structures - see [1] and references therein. One of rela-

tively new approaches is based on Boundary Integral Equations (BIE), theoretical

background of which is referred e.g. in [2]. In this article, we aim to show the espe-

cial integral formulation of the boundary problem for system of Maxwell equations.

To this purpose, we introduce tangential vector fields and study the properties of

derived integral operators.
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2. Formulation of the problem

Let’s denote X = (x1, x2, x3) ∈ R
3 and further S : x3 = f(x1) a surface which

we consider to be smooth with normal vector ν and periodically modulated in coor-

dinate x1 with period Λ and uniform in the x2 direction, see Fig.1.

The interface S divides the space into two semi-infinite homogeneous regions

Ω(1) = {X ∈ R
3, x3 > f(x1)}, Ω

(2) = {X ∈ R
3, x3 < f(x1)} with constant relative

permittivities ε(1) 6= ε(2), ε(1) ∈ R and ε(2) ∈ C, Re (ε(2)) > 0, Im (ε(2)) ≥ 0, and,

relative permeabilities µ(1) = µ(2) = 1 (materials are magnetically neutral).

x
3

x
2

x
1

0 Λ 2Λ
Ω(2)

Ω(1) ε(1) , µ

ε(2) , µ

S 

ν

Figure 1: Structure of regions with common periodical boundary

We aim to solve optical diffraction problem for monochromatic plane wave with

wavelength λ, i.e. with wave number k0 = 2π/λ that is incoming from Ω(1) under

the angle of incidence θ measured from x3 direction. We seek for space-dependent

amplitudes E(j) = E|Ω(j), H(j) = H|Ω(j) of the electromagnetic field intensity vectors

E(X)e−iωt, H(X)e−iωt, where ω = c/λ and c represents the light velocity in the free

space. Especially, we suppose the TM polarization of the incident wave, for which

E(j) = (E
(j)
1 , 0, E

(j)
3 ), H(j) = (0, H

(j)
2 , 0). Therefore, the Maxwell problem leads to

the Helmholtz equations for the scalar components H
(j)
2 (X),

∆H
(j)
2 + k20ε

(j)H
(j)
2 = 0 on Ω(j) , j = 1, 2. (1)

The tangential components of the fields are continuous on the boundary, i.e.

ν × (E(1) −E(2)) = o , ν × (H(1) −H(2)) = o on S . (2)

For the far fields, the well-known Sommerfeld’s radiation convergence conditions hold

that enable to consider the problem on the common interface S only [3].

The incident field at zero diffraction order is characterized by the relation

H
(1−)
0 = e−iωtei(αx1+β

(1−)

0
x3)e2 , e2 = (0, 1, 0) , (3)

where α = k0
√
ε(1) sin θ and β

(1−)
0 is the propagation constant defined below.
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This optical beam is diffracted into reflected wave in Ω(1) and transmitted one

in Ω(2), which are represented by countable sets of modes with wave vectors

k(j±)
m = (αm, 0, β

(j±)
m ) , αm = α+2πm/Λ, (β(j±)

m )2 = k20ε
(j)−α2

m , m ∈ Z. (4)

The sign in superscript denotes propagation direction with respect to the x3 axis

orientation: “+” means the forward wave (reflected), “–” the backward one (incident,

transmitted). For example β(j−)
m < 0, if β(j−)

m ∈ R, or, Im (β(j−)
m ) < 0 otherwise with

respect to radiation conditions and chosen convention e−iωt – see (3). In what follows

stay 1 for 1+ and 2 for 2−.

Denoting x = (x1, x3), y = (y1, y3), the periodical fundamental solution of the

Helmholtz equation in Ω(j) can be written as [4]

Ψ(j)(x,y) =
1

2iΛ

∞

∑

m=−∞

Ψ(j)
m (x,y) , Ψ(j)

m (x,y) =
1

β
(j)
m

ei(αm(x1−y1)+β
(j)
m |x3−y3|) . (5)

In further considerationswe exploit followingwell-knownproperty of the functionsΨ(j) .

Theorem 1. For both of the function Ψ(j)(x,y) defined by (5) the difference (6) is

continuous in R
2.

Ψ(j)(x,y)−
1

2π
ln

1

‖x− y‖
(6)

3. Boundary integral equations

The aim of this section is to formulate boundary integral equations for tangential

fields

J = ν ×E(1) = ν ×E(2), I = −ν ×H(1) = −ν ×H(2) , (7)

where ν = (f ′, 0,−1)/σ with σ =
√
1 + f ′2 is an unit normal vector of the reduced

boundary S : x3 = f(x1) oriented as shown in Fig.1. Similarly, τ = (1, 0, f ′)/σ
represents an unit tangential vector of S.

Thus, on the boundary we can write J = −J2e2, where J2 = τ ·E(1) = τ ·E(2),

and, I = σI1τ = Iττ , where Iτ = σI1 = −H
(1)
2 = −H

(2)
2 .

For boundary points ξ = (ξ1, ξ3), η = (η1, η3) on the interface S : η3 = f(η1),
η1 ∈ 〈0,Λ〉 we obtain following system of boundary integral equations [5]

J2(ξ) = −J0(ξ)− ik0τ ξ ·
∫

S

Iττ η(Ψ
(1) −Ψ(2)) dlη

−
1

ik0
τ ξ ·

∫

S

1

σ

dIτ
dη1

∇η

(

1

ε(1)
Ψ(1) −

1

ε(2)
Ψ(2)

)

dlη +νξ ·
∫

S

J2∇η(Ψ
(1)−Ψ(2)) dlη , (8)

Iτ (ξ) = −I0(ξ)−ik0

∫

S

J2(ε
(1)Ψ(1)−ε(2)Ψ(2)) dlη+

∫

S

Iτ νη ·∇η

(

Ψ(1) −Ψ(2)
)

dlη , (9)
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where

J0(ξ) = −e2·(νξ×E
(1−)
0 ) = τ ξ·E

(1−)
0 , I0(ξ) = τ ξ·(νξ×H

(1−)
0 ) = −H

(1−)
0,2 , (10)

thereby E
(1−)
0 , H

(1−)
0 represent the incident wave in Ω(1).

To derive these equations it is necessary to study properties of integral operators

∫

S

g(η)ψ(x,η) dlη ,
∫

S

g(η)
∂ψ(x,η)

∂ν
dlη ,

∫

S

g(η)∇ηψ(x,η) dlη (11)

with the kernel

ψ(x,η) =
1

2π
ln

1

‖ x− η ‖
(12)

when crossing from the inner point x to the boundary point ξ in the normal direction

(the superscript (j) is omitted for simplicity).

Whereas the first and the second of them are the well-known single and double

layer potentials, the third is worth to mention.

Theorem 2. Let ψ(x,η) is the function (12) and S is smooth boundary of the

domain Ω ⊂ R
2 with unit outward normal ν. If g ∈ C(S), then

lim
x→ξ

∫

S

g(η)∇ηψ(x,η) dlη =
∫

S

g(η)∇ηψ(ξ,η) dlη ±
1

2
g(ξ)ν(ξ) , (13)

where ξ ∈ S, minus holds for x ∈ Ω and plus for x ∈ R
2 \ Ω̄.

4. Operator form

Let π : 〈0, 2π〉 → R
2, π(t) = (p(t), q(t)) be a parametrization of the boundary S.

For the boundary points we have ξ = π(s), η = π(t), s, t ∈ 〈0, 2π〉 with correspond-

ing unit normal vector ν(t) = (ν1(t), ν3(t)) = (q′(t), −p′(t))/ν(t) and unit tangential

vector τ (t) = (p′(t), q′(t))/ν(t), where ν(t) =
√

p′(t)2 + q′(t)2.

In the integral operators kernels the fundamental solution (5) of the Helmoltz

equation takes place, hence the system (8), (9) can be written in operator form

[

V1 + V2 I − V3

I − V4 V5

] [

Iτ
J2

]

=

[

−J2,0
−Iτ,0

]

, (14)

where I is the identity operator,

V1(Iτ ) =
k0

2Λν(s)

2π
∫

0

Iτ (t)g1(s, t)
∑

m∈Z

[

Ψ(1)
m (s, t)−Ψ(2)

m (s, t)
]

dt , (15)

V2(Iτ ) =
i

2k0Λν(s)

2π
∫

0

I ′τ (t)
∑

m∈Z





g
(1)
2,m(s, t)

ε(1)
Ψ(1)

m (s, t)−
g
(2)
2,m(s, t)

ε(2)
Ψ(2)

m (s, t)



 dt , (16)
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V3(J2) =
1

2Λν(s)

2π
∫

0

J2(t)
∑

m∈Z

[

g
(1)
3,m(s, t)Ψ

(1)
m (s, t)− g

(2)
3,m(s, t)Ψ

(2)
m (s, t)

]

ν(t) dt , (17)

V4(Iτ ) =
1

2Λ

2π
∫

0

Iτ (t)
∑

m∈Z

[

g
(1)
4,m(s, t)Ψ

(1)
m (s, t)− g

(2)
4,m(s, t)Ψ

(2)
m (s, t)

]

dt , (18)

V5(J2) =
k0
2Λ

2π
∫

0

J2(t)
∑

m∈Z

[

ε(1)Ψ(1)
m (s, t)− ε(2)Ψ(2)

m (s, t)
]

ν(t) dt (19)

with

g1(s, t) = ν(s)ν(t)τ (s) · τ (t) , g
(j)
2,m(s, t) = ν(s)τ (s) · κ(j)

m (s, t) ,

g
(j)
3,m(s, t) = ν(s)ν(s) · κ(j)

m (s, t) , g
(j)
4,m(s, t) = ν(t)ν(t) · κ(j)

m (s, t) ,

κ(j)
m (s, t) =

(

αm, sgn(q(s)− q(t))β(j)
m

)

(20)

The right-hand terms of (14) are obtained by parametrization of incident fields (10).

5. Properties of boundary integral operators

Now we need to discuss properties of integral operators kernels, which are written

as differences c1Ψ
(1)(s, t)− c2Ψ

(2)(s, t), or their gradients, where c1, c2 are generally

complex constants. Because for s 6= t this expression represents a continuous func-

tion, it suffices to analyse the singular case for s = t.

Theorem 3. Let c1, c2 ∈ C. Then for s = t the functions

c1Ψ
(1)(s, t)− c2Ψ

(2)(s, t) , ∇t

(

c1Ψ
(1)(s, t)− c2Ψ

(2)(s, t)
)

(21)

are continuous for c1 = c2 and these have singularity of logarithmic type for c1 6= c2.

The particular manner how to evaluate singular integrals depends on the choice

of numerical method. The following theorems show one of possible methods - see [6],

where also the proofs can be found (Z∗ = Z− {0}).

Theorem 4. Let π : 〈0, 2π〉 → R
2 is a parametrization that satisfies

p(0) = 0, p(2π) = Λ, q(0) = q(2π), p(t+ 2π) = p(t) + Λ, q(t+ 2π) = q(t).

Then

ln ‖π(s)− π(t)‖ = ln |2 sin
s− t

2
| = −

∑

m∈Z
∗

e−im(s−t)

2|m|
. (22)

Theorem 5. The series (23) is absolutely convergent.

∑

m∈Z
∗

{

Ψ(j)
m (s, t)−

1

2π

e−im(s−t)

2|m|

}

(23)
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These properties together with Theorem 1 allow us to split the fundamental

solution as

Ψ(j)(s, t) = Ψ(j)
r (s, t) + ψ(s, t), (24)

where

Ψ(j)
r (s, t) = Ψ

(j)
0 (s, t) +

∑

m∈Z
∗

{

Ψ(j)
m (s, t)−

1

2π

e−im(s−t)

2|m|

}

, (25)

ψ(s, t) =
1

2π
ln |2 sin

s− t

2
| . (26)

In numerical implementations we work separately with regular integral kernels and

with singular integrals which can be evaluated analytically.

6. Conclusion

The presented formulation of diffraction problem represents appropriate back-

ground of numerical solution by the Boundary Elements Method (BEM). Specific

problem to discuss is the choice of basis functions; trigonometric polynomials can be

used [3], for instance. For further work we prefer piecewise linear boundary elements.
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Abstract

The model of coupled heat transport and Darcian water flow in unsaturated soils

and in conditions of freezing and thawing is analyzed. In this contribution, we present

results concerning the existence of the numerical solution. Numerical scheme is based

on semi-implicit discretization in time. This work illustrates its performance for

a problem of freezing processes in vertical soil columns.

1. Introduction

Let T > 0 and ℓ > 0 be the fixed values, Ω = (0, ℓ), I = (0, T ), ΩT = Ω× I. We

consider a mixed initial-boundary value problem for a general model of the coupled

heat and mass flow in freezing soils. The mathematical model consists of the following

system (cf. [1]):

∂θM (z, ϑ, u)

∂t
=

∂

∂z

(

k(z, ϑ, u)
∂u

∂z

)

in ΩT , (1)

Ca(z, ϑ, u)
∂ϑ

∂t
=

∂

∂z

(

λ(z, ϑ, u)
∂ϑ

∂z

)

+ Cwk(z, ϑ, u)
∂ϑ

∂z

∂u

∂z
in ΩT , (2)

u(0, t) = uD(t) and ϑ(0, t) = ϑD(t) in I, (3)

−k(z, ϑ, u)
∂u

∂z
= βc(u− u

∞
) and − λ(z, ϑ, u)

∂ϑ

∂z
= αc(ϑ− ϑ

∞
) in I, z = ℓ, (4)

u(z, 0) = u0(z) and ϑ(z, 0) = ϑ0(z) in Ω. (5)

This system describes the one-dimensional coupled water flow and heat transport

involving freezing-thawing processes in a vertical soil column. Equations (1) and (2)

represent conservation laws for mass and energy, (3) and (4) are prescribed boundary

conditions of Dirichlet and Neumann type, respectively, and (5) represents appropri-

ate initial conditions. In (1)–(5) u = u(z, t) [m] and ϑ = ϑ(z, t) [K] (single-valued
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functions of the time t and the spatial position z ∈ Ω positive upward) are the

primary unknowns for the total pressure head and temperature, θM [-] is the total

water content, k [m s−1] represents the hydraulic conductivity, Ca [Jm−3K−1] is the

so called apparent heat capacity and λ [Wm−1K−1] is the thermal conductivity of

the soil. Material constant parameters in (1)–(5) are the volumetric heat capacity of

water Cw (4.181×106 Jm−3K−1), convective heat and mass transfer coefficients αc
[Wm−2K−1] and βc [s

−1].

2. Freezing and thawing

Define ψ [m] as the matric potential corresponding to the liquid water con-

tent θw [-] and the matric potential h [m] corresponding to the total water con-

tent θV [-] (liquid and ice). The amount of water present at a certain matric po-

tential of the porous medium is characterized by the water retention curve θ(·). In

particular, θV = θ(h), while θw = θ(ψ). Here we use the relation proposed by van

Genuchten [4] θ(h) = θr+(θs− θr)[1+ |αh|n]−m, where θs is the soil saturated water

content [-], θs is the soil residual water content [-], α [m−1], m and n are parameters.

Water in soil pores does not freeze at 273.15 K, but is subject to a freezing-

point depression caused by interaction between water, soil particles and solutes. The

generalized Clapeyron equation is used to describe the condition for the co-existence

of water and ice. The local freezing point of pore fluid can be obtained from the

generalized Clapeyron equation [1, 2]

dp =
ρwLf
ϑ

dϑ, (6)

where p [Pa] is the water pressure, p = ρwgh, h = u − z, g is the acceleration

due to gravity (9.81 m s−2), h [m] the pressure head (matric potential), ρw the

density of liquid water (approximately 1000.0 kg m−3) and Lf is the latent heat

of fusion (3.34 × 105 J kg−1). Let ϑ0 = 273.15 be the freezing temperature at zero

pressure head. If the soil is unsaturated, the surface tension at the water/air interface

decreases the water freezing temperature to ϑf < 273.15 K. To obtain the value ϑf
at the given pressure P integrate (6) in temperature from 273.15 to ϑf and from 0

to P in pressure to obtain

∫ P

0

dp =

∫ ϑf

273.15

ρwLf
ϑ

dϑ, which yields ϑf = 273.15ehg/Lf = 273.15e(u−z)g/Lf . (7)

Similarly, integrating (6) in temperature from ϑf to ϑ and from P (= hρwg) to

Pψ(= ψρwg) in pressure yields (recall u = h+ z)

ψ(z, ϑ, u) = ψ(ϑ, u− z) ≡ ψ(ϑ, h) = h+
Lf
g

ln
ϑ

ϑf
= u− z +

Lf
g

ln
ϑ

ϑf
. (8)

The above equation is valid for ϑ < ϑf . If ϑ > ϑf all water is unfrozen and h = ψ
and θw = θV . Consequently, whenever ϑ < ϑf , the ice fraction θi [-] can be expressed
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as θi = θV −θw [-]. In addition, the total water content θM (present in (1)) as derived

by the fraction of total mass of liquid water and ice (see [1, Appendix A]) reads

θM(z, ϑ, u) = θw(ψ(z, ϑ, u)) +
ρi
ρw
θi(z, ϑ, u) =

ρi
ρw
θV (z, u) +

(

1−
ρi
ρw

)

θw(ψ(z, ϑ, u)),

where ρi is the density of ice (918 kg m−3).

2.1. Structural conditions and assumptions on physical parameters

Let us present some properties and additional assumptions on physical parameters

introduced in the model.

A1 The parameters ρw, ρi, θs, θr, Cw, Lf , αc and βc are real positive constants

and ρi < ρw.

A2 The thermal conductivity λ, apparent thermal capacity Ca and hydraulic con-

ductivity k are assumed to be positive continuous functions of their arguments

(see [2] for specific examples). In addition,

0 < Ca(z, ξ, ζ) 6 C♯
a < +∞ ∀ξ, ζ ∈ R (C♯

a = const > 0). (9)

A3 Functions θw = θw(z, ·) and θV = θV (z, ·) (for z ∈ Ω) are positive, nondecreas-

ing, continuous and bounded functions such that

θr 6 θw(z, ξ) 6 θs, θw(z, ξ) 6 θV (z, ξ) 6 θs ∀ξ ∈ R. (10)

Consequently, θM is a positive continuous function such that

0 < θM(z, ξ, ζ) =
ρi
ρw
θV (z, ξ) +

(

1−
ρi
ρw

)

θw(z, ζ) 6 θs for all ξ, ζ ∈ R.

A4 Functions uD, ϑD, u∞, ϑ
∞

are continuous on [0, T ], u0, ϑ0 ∈ W 1,2(Ω)2 and the

compatibility conditions u0(0) = uD(0) and ϑ0(0) = ϑD(0) hold.

3. The approximate solution

Albeit the coupled problem (1)–(5) is essentially non-stationary in their nature,

we shall formulate and analyze a weak form of the stationary problem. It has a signif-

icant mathematical interest because the time discretization of the evolution problem

leads, in each time step, to a coupled system of stationary equations.

Let 0 = t0 < t1 < · · · < tN = T be an equidistant partitioning of time interval

[0;T ] with step ∆t. Set a fixed integer n such that 0 6 n 6 N − 1. In what follows

we abbreviate φ(z, tn) by φn (≡ φ(z)n) for any function φ. The time discretization

of the continuous model is accomplished through a semi-implicit difference scheme.
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Consequently, we have to solve, successively for n = 0, . . . , N − 1, the following

semilinear system with primary unknowns [ϑn+1, un+1]

θM (z, ϑn+1, un+1)− θM(z, ϑn, un)

∆t
=

∂

∂z

(

kn
∂un+1

∂z

)

, (11)

(Ca)n+1
ϑn+1 − ϑn

∆t
=

∂

∂z

(

λn
∂ϑn+1

∂z

)

+ Cwkn
∂un
∂z

∂ϑn
∂z

, (12)

u(0)n+1 = (uD)n+1 and ϑ(0)n+1 = (ϑD)n+1,(13)

−kn
∂un+1

∂z

∣

∣

∣

z=ℓ
= βc(u(ℓ)n+1 − u

∞
(ℓ)n+1), (14)

−λn
∂ϑn+1

∂z

∣

∣

∣

z=ℓ
= αc(ϑ(ℓ)n+1 − ϑ

∞
(ℓ)n+1). (15)

Here, we assume that the functions un and ϑn are known and (for the sake of sim-

plicity) we put kn = k(z, ϑn, un), λn = λ(z, ϑn, un), (Ca)n+1 = Ca(z, ϑn+1, un+1). In

what follows we study the problem of the existence of the solution un+1 and ϑn+1.

Let V be a closure of the space
{

v ∈ C∞(Ω)2; v(0) = 0
}

in the norm ofW 1,2(Ω)2.

By 〈·, ·〉 we denote the duality between V and V
∗, where V∗ represents the dual space

corresponding to V. Define an operator A :W 1,2(Ω)2 → V
∗ given by the equation

〈A([ϑn+1, un+1]),ϕ〉 :=

∫

Ω

kn
∂un+1

∂z

∂ϕ1

∂z
+ λn

∂ϑn+1

∂z

∂ϕ2

∂z
dz

+
1

∆t

∫

Ω

θM(z, ϑn+1, un+1)ϕ1 + (Ca)n+1(ϑn+1 − ϑn)ϕ2 dz

+ βcu(ℓ)n+1 ϕ1(ℓ) + αcϑ(ℓ)n+1ϕ2(ℓ) (16)

for every ϕ = [ϕ1, ϕ2] ∈ V and the functional f ∈ V
∗ by the equation

〈f ,ϕ〉 :=
1

∆t

∫

Ω

θM (z, ϑn, un)ϕ1dz +

∫

Ω

Cwkn
∂un
∂z

∂ϑn
∂z

ϕ2 dz

+ βcu∞(ℓ)n+1ϕ1(ℓ) + αcϑ∞(ℓ)n+1ϕ2(ℓ) (17)

for all ϕ = [ϕ1, ϕ2] ∈ V. It can be shown that the operator A and the functional

f are well defined. Let [ϑn, un] ∈ [(ϑD)n, (uD)n] + V. We say that the couple

[ϑn+1, un+1] ∈ [(ϑD)n+1, (uD)n+1] + V is the weak solution of the problem (11)–(15)

whenever 〈A([ϑn+1, un+1]),ϕ〉 = 〈f ,ϕ〉 for all ϕ = [ϕ1, ϕ2] ∈ V.

Theorem 1. For a given couple [ϑn, un] ∈ [(ϑD)n, (uD)n] + V there exists a weak

solution [ϑn+1, un+1] ∈ [(ϑD)n+1, (uD)n+1] + V of the problem (11)–(15).

Sketch of the proof. Note that the couple [ϑn+1, un+1] ∈ [(ϑD)n+1, (uD)n+1]+V is the

weak solution of the problem (11)–(15) iff it is a solution of the operator equation

A([ϑn+1, un+1]) = f .
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Let us define A : V → V
∗ by A([ϑ̄n+1, ūn+1]) := A([ϑ̄n+1, ūn+1]+ [(ϑD)n+1, (uD)n+1]).

The abstract equation A([ϑ̄n+1, ūn+1]) = f has a solution [ϑ̄n+1, ūn+1] ∈ V if and

only if [ϑn+1, un+1] = [ϑ̄n+1, ūn+1] + [(ϑD)n+1, (uD)n+1] ∈ W 1,2(Ω)2 is the solution of

the equation A([ϑn+1, un+1]) = f . Note that the equation A([ϑ̄n+1, ūn+1]) = f rep-

resents a variational formulation corresponding to the system of coupled semilinear

equations. It can be shown that the operator A : V → V
∗ is pseudomonotone and

coercive. Now [3, Theorem 3.3.42] yields the existence of the solution [ϑ̄n+1, ūn+1] ∈ V

to the equation A([ϑ̄n+1, ūn+1]) = f .

4. Numerical solution and results

By means of the model described above, we briefly present numerical results for

coupled water flow and heat transport involving freezing-thawing cycle in a vertical

soil column. The soil thickness in the numerical simulation for the one-dimensional

vertical transport is 1 m, see Fig. 1. The spatial discretization of the system (11)–(15)

is carried out by means of the FE-method with piecewise linear elements with spa-

tial discretization as indicated in Fig. 1. This resulting system is solved using the

well-known Newton method at each time step with ∆t = 30 s. Physical properties of

soil are taken from [1, 2, 4]. The initial and boundary conditions are set as follows:

ϑ0 = ϑD = 277.15 K, u0 = −0.1241 + z m, u
∞

decreases from the value u0 + 1 m to

−100 m during the first two days and then taken constant, the distribution of ϑ
∞

is shown in Fig. 2. The progress of freezing and thawing in a soil column based

on numerical simulation is clearly visible in Figures 3 and 4 which show the vertical

distributions of the temperature, water content and ice during the 8-days period.

1
m

∆z

z

ϑD, uD

ϑ∞, u∞

Figure 1: Analyzed soil profile.
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Abstract

We describe the basic ideas needed to obtain apriori error estimates for a nonlinear

convection diffusion equation discretized by higher order conforming finite elements.

For simplicity of presentation, we derive the key estimates under simplified assump-

tions, e.g. Dirichlet-only boundary conditions. The resulting error estimate is ob-

tained using continuous mathematical induction for the space semi-discrete scheme.

1. Continuous problem

Let Ω ⊂ R
d, d ∈ N, be a bounded open polyhedral domain. We treat the following

nonlinear convective problem. Find u : Ω× (0, T ) → R such that

a)
∂u

∂t
+ div f(u) = g in Ω× (0, T ), (1)

b) u
∣

∣

∂Ω×(0,T )
= 0, (2)

d) u(x, 0) = u0(x), x ∈ Ω. (3)

Here g : Ω × (0, T ) → R and u0 : Ω → R are given functions. We assume that the

convective fluxes f = (f1, · · · , fd) ∈ (C2
b (R))

d = (C2(R) ∩ W 2,∞(R))d, hence f and

f ′ = (f ′

1, · · · , f
′

d) are globally Lipschitz continuous.

By (· , · ) we denote the standard L2(Ω)−scalar product and by ‖ · ‖ the L2(Ω)-

norm. By ‖ · ‖
∞
, we denote the L∞(Ω)-norm. For simplicity of notation, we shall

drop the argument Ω in Sobolev norms, e.g. ‖·‖Hp+1 denotes the Hp+1(Ω)-norm. We

shall also denote the Bochner norms over the whole interval [0, T ] in concise form,

e.g. ‖u‖L∞(Hp+1) denotes the L∞(0, T ;Hp+1(Ω))-norm.

2. Discretization

Let Th be a triangulation of Ω, i.e. a partition into a finite number of closed

simplexes with mutually disjoint interiors. We assume standard conforming proper-

ties: two neighboring elements from Th share an entire face, edge or vertex. We set

h = maxK∈Th
diam(K) .
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We consider a system {Th}h∈(0,h0), h0 > 0, of triangulations of the domain Ω

which are shape regular and satisfy the inverse assumption, cf. [2]. Let p ≥ 1 be an

integer. The approximate solution will be sought in the space of globally continuous

piecewise polynomial functions Sh = {v ∈ C(Ω); v|ΓD
= 0, v|K ∈ P p(K)∀K ∈ Th},

where P p(K) denotes the space of polynomials on K of degree ≤ p.
We discretize the continuous problem in a standard way. Multiply (1) by a test

function ϕh ∈ Sh, integrate over Ω and apply Green’s theorem.

Definition 1. We say that uh ∈ C1([0, T ];Sh) is the space-semidiscretized finite

element solution of problem (1)–(3), if uh(0) = u0
h ≈ u0 and

d

dt

(

uh(t), ϕh

)

+ b
(

uh(t), ϕh

)

= l
(

ϕh

)

(t), ∀ϕh ∈ Sh, t ∈ (0, T ). (4)

Here, we have introduced an approximation u0
h ∈ Sh of the initial condition u0

and the convective and right-hand side forms defined for v, ϕ ∈ H1(Ω):

b(v, ϕ) = −

∫

Ω

f(v)· ∇ϕ dx, l(ϕ)(t) =

∫

Ω

g(t)ϕ dx.

We note that a sufficiently regular exact solution u of problem (1) satisfies

d

dt

(

u(t), ϕh

)

+ b
(

u(t), ϕh

)

= l
(

ϕh

)

(t), ∀ϕh ∈ Sh, ∀t ∈ (0, T ), (5)

which implies the Galerkin orthogonality property of the error.

3. Key estimates of the convective terms

As usual in apriori error analysis, we assume that the weak solution u is suffi-

ciently regular, namely

u, ut ∈ L2
(

0, T ;Hp+1(Ω)
)

, u ∈ L∞(0, T ;W 1,∞(Ω)), (6)

where ut :=
∂u
∂t
. For v ∈ L2(Ω) we denote by Πhv the L2(Ω)-projection of v on Sh:

Πhv ∈ Sh, (Πhv − v, ϕh) = 0, ∀ϕh ∈ Sh.

Let ηh(t) = u(t)−Πhu(t) ∈ Hp+1(Ω) and ξh(t) = Πhu(t)− uh(t) ∈ Sh for t ∈ (0, T ).
Then we can write the error eh as eh(t) := u(t) − uh(t) = ηh(t) + ξh(t). By C
we denote a generic constant independent of h, which may have different values in

different parts of the text. Also, for simplicity of notation, we shall usually omit the

argument (t) and subscript h in ξh(t) and ηh(t). In our analysis, we shall need the

following standard inverse inequalities and approximation properties of η, (cf. [2]):

Lemma 1. There exists a constant CI > 0 independent of h s.t. for all vh ∈ Sh

|vh|H1 ≤ CIh
−1||vh||,

‖vh‖∞ ≤ CIh
−d/2‖vh‖.
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Lemma 2. There exists a constant C > 0 independent of h s.t. for all h ∈ (0, h0)

‖ηh(t)‖ ≤ Chp+1|u(t)|Hp+1,
∥

∥

∂ηh(t)
∂t

∥

∥ ≤ Chp+1
∣

∣

∂u(t)
∂t

∣

∣

Hp+1
,

‖ηh(t)‖∞ ≤ Ch|u(t)|W 1,∞.

Lemma 3. There exists a constant C ≥ 0 independent of h, t, such that

b
(

uh(t), ξ(t)
)

− b
(

u(t), ξ(t)
)

≤ C
(

1 +
‖eh(t)‖∞

h

)

(

h2p+2|u(t)|2Hp+1 + ‖ξ(t)‖2
)

. (7)

Proof. The proof follows the arguments of [5], where similar estimates are derived

for periodic boundary conditions or compactly supported solutions in 1D. The proof

for mixed Dirichlet-Neumann boundary conditions is contained in [4]. We write

b(uh, ξ)− b(u, ξ) =

∫

Ω

(

f(u)− f(uh)
)

· ∇ξ dx. (8)

By the Taylor expansion of f with respect to u, we have

f(u)− f(uh) = f ′(u)ξ + f ′(u)η −
1

2
f ′′u,uh

e2h, (9)

where f ′′u,uh
is the Lagrange form of the remainder of the Taylor expansion, i.e.

f ′′u,uh
(x, t) has components f ′′

s

(

ϑs(x, t)u(x, t)+(1−ϑs(x, t))uh(x, t)
)

for some ϑs(x, t) ∈
[0, 1] and s = 1, · · · , d. Substituting (9) into (8), we obtain

b(uh, ξ)− b(u, ξ) =

∫

Ω

f ′(u)ξ· ∇ξ dx

︸ ︷︷ ︸

Y1

+

∫

Ω

f ′(u)η· ∇ξ dx

︸ ︷︷ ︸

Y2

−
1

2

∫

Ω

f ′′u,uh
e2h· ∇ξ dx

︸ ︷︷ ︸

Y3

. (10)

We shall estimate these terms individually.

(A) Term Y1: Due to Green’s theorem and the boundedness of f ′′ and the regularity

of u, we have

∫

Ω

f ′(u)ξ· ∇ξ dx = −
1

2

∫

Ω

div
(

f ′(u)
)

ξ2 dx ≤ C‖ξ‖2.

(B) Term Y2: We define Π1
h : (L2(Ω))d → (S1

h)
d = {v ∈ (C(Ω))d; v|ΓD

= 0, v|K ∈
(P 1(K))d, ∀K ∈ Th}, the (L

2(Ω))d-projection onto the space of continuous piecewise

linear vector functions. From standard approximation results (similar to those of

Lemma 2, cf. [2]), we obtain

‖f ′(u)−Π1
h(f

′(u))‖
∞

≤ Ch|f ′(u)|W 1,∞ ≤ Ch‖f ′′‖L∞(R)|u|L∞(W 1,∞) = C̃h.
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Furthermore, due to the definition of η, we have
∫

Ω
Π1

h(f
′(u))· ∇ξ η dx = 0, since

Π1
h(f

′(u))· ∇ξ ∈ Sh. Therefore, by Lemmas 1, 2 and Young’s inequality

|Y2| =
∣

∣

∣

∫

Ω

(

f ′(u)− Π1
h(f

′(u))
)

· ∇ξ η dx
∣

∣

∣
≤ ‖f ′(u)−Π1

h(f
′(u))‖

∞
CIh

−1‖ξ‖‖η‖

≤ C̃hCIh
−1‖ξ‖‖η‖ ≤ ‖ξ‖2 + Ch2p+2|u(t)|2Hp+1.

(C) Term Y3: We apply Lemmas 1, 2 and Young’s inequality:

|Y3| ≤ C‖eh‖∞‖eh‖CIh
−1‖ξ‖ ≤ Ch−1‖eh‖∞

(

Ch2p+2|u(t)|2Hp+1 + ‖ξ‖2
)

.

�

4. Error analysis of the semidiscrete scheme

We proceed similarly as for a parabolic equation. By Galerkin orthogonality, we

subtract (5) and (4) and set ϕh := ξh(t) ∈ Sh. Since
(

∂ξh
∂t
, ξh

)

= 1
2

d
dt
‖ξh‖

2, we get

1

2

d

dt
‖ξh(t)‖

2 = b
(

uh(t), ξh(t)
)

− b
(

u(t), ξh(t)
)

−
(∂ηh(t)

∂t
, ξh(t)

)

.

For the last right-hand side term, we use the Cauchy and Young’s inequalities and

Lemma 2 and Lemma 3 for the convective terms. We integrate from 0 to t ∈ [0, T ],

‖ξh(t)‖
2≤ C

∫ t

0

(

1+
‖eh(ϑ)‖∞

h

)(

h2p+1|u(ϑ)|2Hp+1+h2p+2|ut(ϑ)|
2
Hp+1+‖ξh(ϑ)‖

2
)

dϑ, (11)

where C ≥ 0 is independent of h, t. For simplicity, we have assumed that ξh(0) = 0,

i.e. u0
h = Πhu

0. Otherwise we must assume e.g. ‖ξh(0)‖
2 ≤ Ch2p+1|u0|2Hp+1 and

include this term in the estimate.

We notice that if we knew apriori that ‖eh‖∞ = O(h) then the unpleasant term

h−1‖eh‖∞ in (11) would be O(1). Thus we could simply apply the standard Gronwall

lemma to obtain the desired error estimates. We state this formally:

Lemma 4. Let t ∈ [0, T ] and p ≥ d/2. If ‖eh(ϑ)‖ ≤ h1+d/2 for all ϑ ∈ [0, t], then
there exists a constant CT independent of h, t such that

max
ϑ∈[0,t]

‖eh(ϑ)‖
2 ≤ C2

Th
2p+1. (12)

Proof. The assumptions imply, by the inverse inequality and estimates of η, that

‖eh(ϑ)‖∞ ≤ ‖ηh(ϑ)‖∞ + ‖ξh(ϑ)‖∞ ≤ Ch|u(t)|W 1,∞ + CIh
−d/2‖ξh(ϑ)‖ (13)

≤ Ch + CIh
−d/2‖eh(ϑ)‖ + CIh

−d/2‖ηh(ϑ)‖ ≤ Ch+ Chp+1−d/2|u(ϑ)|Hp+1(Ω) ≤ Ch,

where the constant C is independent of h, ϑ, t. Using this estimate in (11) gives us

‖ξh(t)‖
2 ≤ C̃h2p+1 + C

∫ t

0

‖ξh(ϑ)‖
2 dϑ, (14)
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where the constants ˜C,C are independent of h, t. Gronwall’s inequality applied

to (14) states that there exists a constant ˜CT , independent of h, t, such that

max
ϑ∈[0,t]

‖ξh(ϑ)‖
2 +

1

2

∫ t

0

|ξh(ϑ)|
2
ΓN

dϑ ≤ ˜CTh
2p+1,

which allong with similar estimates for η gives us (12). �

Now it remains to get rid of the apriori assumption ‖eh‖∞ = O(h). In [5]

this is done for an explicit scheme using mathematical induction. Starting from

‖e0h‖ = O(hp+1/2), the following induction step is proved:

‖enh‖ = O(hp+1/2) =⇒ ‖en+1
h ‖

∞
= O(h) =⇒ ‖en+1

h ‖ = O(hp+1/2). (15)

For the method of lines we have continuous time and hence cannot use mathematical

induction straightforwardly. However, we can divide [0, T ] into a finite number of

sufficiently small intervals [tn, tn+1] on which “eh does not change too much” and use

induction with respect to n. This is essentially a continuous mathematical induction

argument, a concept introduced in [1], which has many generalizations, cf. [3].

Lemma 5 (Continuous mathematical induction). Let ϕ(t) be a propositional func-

tion depending on t ∈ [0, T ] such that

(i) ϕ(0) is true,

(ii) ∃δ0 > 0 : ϕ(t) implies ϕ(t+ δ), ∀t ∈ [0, T ] ∀δ ∈ [0, δ0] : t+ δ ∈ [0, T ].

Then ϕ(t) holds for all t ∈ [0, T ].

Remark 1 Due to the regularity assumptions, the functions u(· ), uh(· ) are con-

tinuous mappings from [0, T ] to L2(Ω). Since [0, T ] is a compact set, eh(· ) is a uni-

formly continuous function from [0, T ] to L2(Ω). By definition,

∀ǫ > 0 ∃δ > 0 : s, s̄ ∈ [0, T ], |s− s̄| ≤ δ =⇒ ‖eh(s)− eh(s̄)‖ ≤ ǫ.

Theorem 6 (Semidiscrete error estimate). Let p > (1 + d)/2. Let h1 > 0 be such

that CTh
p+1/2
1 = 1

2
h
1+d/2
1 , where CT is the constant from Lemma 4. Then for all

h ∈ (0, h1] we have the estimate

max
ϑ∈[0,T ]

‖eh(ϑ)‖
2 ≤ C2

Th
2p+1. (16)

Proof. Since p > (1 + d)/2, h1 is uniquely determined and CTh
p+1/2 ≤ 1

2
h1+d/2 for

all h ∈ (0, h1]. We define the propositional function ϕ by

ϕ(t) ≡
{

max
ϑ∈[0,t]

‖eh(ϑ)‖
2 ≤ C2

Th
2p+1

}

.

We shall use Lemma 5 to show that ϕ holds on [0, T ], hence ϕ(T ) holds, which is

equivalent to (16).
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(i) ϕ(0) holds, since this is the error of the initial condition.

(ii) Induction step: We fix an arbitrary h ∈ (0, h1]. By Remark 1, there exists

δ0 > 0, such that if t ∈ [0, T ), δ ∈ [0, δ0], then ‖eh(t+ δ)− eh(t)‖ ≤ 1
2
h1+d/2. Now let

t ∈ [0, T ) and assume ϕ(t) holds. Then ϕ(t) implies ‖eh(t)‖ ≤ CTh
p+1/2 ≤ 1

2
h1+d/2.

Let δ ∈ [0, δ0], then by uniform continuity

‖eh(t+ δ)‖ ≤ ‖eh(t)‖+ ‖eh(t+ δ)− eh(t)‖ ≤ 1
2
h1+d/2 + 1

2
h1+d/2 = h1+d/2.

This and ϕ(t) implies that ‖eh(s)‖ ≤ h1+d/2 for s ∈ [0, t] ∪ [t, t + δ] = [0, t + δ]. By

Lemma 4, ϕ holds on [0, t + δ]. As a special case, we obtain the “induction step”

ϕ(t) =⇒ ϕ(t+ δ) for all δ ∈ [0, δ0]. �

5. Conclusion

We have presented the basic ideas behind the apriori analysis of nonlinear convec-

tive problems. To keep things as simple as possible, we have presented the analysis

only for a space-semidiscrete scheme, with Dirichlet boundary conditions only. The

extension to mixed boundary conditions, the extension to implicit schemes via con-

tinuation, derivation of improved estimates under the assumption f ∈ (C3
b (R))

d and

the generalization to locally Lipschitz f ∈ (C2(R))d can be found in [4].
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Abstract

This article focuses on the problem of calculating the intensity of heat radiation

and its optimization across the surface of an aluminium or nickel mould. The inner

mould surface is sprinkled with a special PVC powder and the outer mould surface is

warmed by infrared heaters located above the mould. In this way artificial leathers

are produced in the car industry (e.g., the artificial leather on a car dashboard). The

article includes a description of how a mathematical model allows us to calculate

the heat radiation intensity across the mould surface for every fixed location of the

heaters. In calculating the intensity of the heat radiation, we use experimentally

measured values of the heat radiation intensity by a sensor at the selected points in the

vicinity of the heater. It is necessary to optimize the location of the heaters to provide

approximately the same heat radiation intensity across the whole mould surface during

the warming of the mould (to obtain a uniform material structure and colour tone of

the artificial leather). The problem of optimization is more complicated (used moulds

are often very rugged, during the process of optimization we avoid possible collisions

of two heaters as well as of a heater and the mould surface). A genetic algorithm

and the technique of hill climbing are used during the process of optimization. The

calculations were performed by a Matlab code written by the authors. The article

contains a practical example.

1. Introduction

This article describes a procedure for the calculation of radiation intensity across

the whole mould surface for fixed locations of infrared heaters and the process of heat

radiation intensity optimization on the mould surface. The problem of optimization

is rather complicated, a genetic algorithm and the hill climbing technique are used

to find suitable locations for the heaters over the mould and to optimize the heat

radiation intensity across the whole outer mould surface.
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2. A mathematical model of heat radiation

In this chapter a simplified mathematical model of heat radiation produced by

infrared heaters and absorbed by the outer mould surface is described. The heaters

and the heated mould are represented in 3-dimensional Euclidean space using

the Cartesian coordinate system (O, x1, x2, x3) with basis vectors e1 = (1, 0, 0),
e2=(0, 1, 0), e3 = (0, 0, 1).
Representation of a heater. A heater is represented by a line segment of length d.
The location of a heater is defined by the following parameters: 1/ coordinates of

the heater centre S = [xS
1 , x

S
2 , x

S
3 ], 2/ the unit vector u = (xu

1 , x
u
2 , x

u
3) of the heat

radiation direction, where xu
3 < 0 (i.e., heater radiates “downward ”), 3/ the vector

of the heater axis r = (xr
1, x

r
2, x

r
3) (see Figure 1). The other way to determine r is by

using the angle ϕ between the positive part of the x1-axis and the vertical projection

of r onto the x1x2-plane (the vectors u and r are orthogonal, 0 ≤ ϕ < π). The

location of every heater Z can be defined by the following 6 parameters

Z : (xS
1 , x

S
2 , x

S
3 , x

u
1 , x

u
2 , ϕ). (1)

d ± heater length 

S 

u ± vector  

of radiation 

direction 

x1 

x2 

x3 

o ± heater axis 

r ± vector  

of heater axis 

Figure 1: Representation of the heater in the model.

Representation of a mould. The mould surface P is described by the elementary

surfaces pj , where 1 ≤ j ≤ N . It holds that P = ∪pj , where 1 ≤ j ≤ N and

int pi ∩ int pj = ∅ for i 6= j, 1 ≤ i, j ≤ N . Every elementary surface pj is described

by the following parameters: 1/ the center of gravity Tj = [x
Tj

1 , x
Tj

2 , x
Tj

3 ], 2/ the

unit outer normal vector vj = (x
vj
1 , x

vj
2 , x

vj
3 ) at the point Tj (we suppose vj faces

“upwards” and therefore is defined through the first two components x
vj
1 and x

vj
2 ),

3/ the size of its area sj. Every elementary surface thus can be defined by the

following 6 parameters:

pj : (x
Tj

1 , x
Tj

2 , x
Tj

3 , x
vj
1 , x

vj
2 , sj). (2)
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3. The calculation of heat radiation intensity

We describe the process of calculating the heat radiation intensity on the mould

surface for given fixed locations of the heaters. The heater manufacturer has not pro-

vided the distribution function of the heat radiation intensity in the heater surround-

ings. We realized the experimental measurement of the heat radiation intensity. The

measured heater location was Z : (0, 0, 0, 0, 0, 0) in accordance with the relation (1),

i.e., the center S of the heater was situated at the origin of the Cartesian coordinate

system (O, x1, x2, x3), the unit radiation vector had coordinates u = (0, 0,−1) and

the vector of the heater axis had coordinates r = (1, 0, 0). We suppose the heat

radiation intensity across the elementary surface pj is the same as at the centre of

gravity Tj . The heat radiation intensity at Tj depends on the position of this point

(determined by the first three parameters in the vector pj given by the relation(2))

and on the direction of the outer normal vector vj at the point Tj (determined by

the fourth and fifth parameters in the vector pj given by (2)). The heat radiation

intensity in the surroundings of the heater was experimentally measured by a sensor

placed at chosen points below the heater. We use a linear interpolation function of

5 variables to continuously interpolate the measured heat radiation intensity in the

vicinity of the heater Z (for more detail see [4]).

For a heater in a general position, we briefly describe the transformation of the

previous Cartesian coordinate system (O, e1, e2, e3) into a positively oriented Carte-

sian system (S, r, n,−u), where S is the centre of the heater, r is the heater axis

vector, and u is the direction vector of the heat radiation. The vector n is deter-

mined by the vector product of the vectors −u and r (see more detail in [1]) and is

defined by the relation

n = (−u)× r =

(

−

∣

∣

∣

∣

∣

xu
2 xu

3

xr
2 xr

3

∣

∣

∣

∣

∣

,

∣

∣

∣

∣

∣

xu
1 xu

3

xr
1 xr

3

∣

∣

∣

∣

∣

,−

∣

∣

∣

∣

∣

xu
1 xu

2

xr
1 xr

2

∣

∣

∣

∣

∣

)

.

The vectors r, u and n are normalized to have the unit length. Then we can define

an orthonormal transformation matrix

A =







xr
1 xn

1 −xu
1

xr
2 xn

2 −xu
2

xr
3 xn

3 −xu
3





 .

Let us recall that, for the elementary surface pj , the respective triples Tj and vj
represent its centre of gravity and its outer normal vector in the Cartesian coordinate

system (O, e1, e2, e3). If S is the triple representing (in (O, e1, e2, e3)) the center of

the heater that determines the coordinate system (S, r, n,−u), then Tj and vj are

transformed as follows:
(

T
′

j

)T
= AT (Tj − S)T and

(

v
′

j

)T
= ATvTj ,

where T
′

j and v
′

j are the coordinates in (S, r, n,−u). In this way, we transform the

general case to the measured case.
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Now we describe the procedure of numerical computation for the total heat radi-

ation intensity on the mould surface. We denote Lj as the set of all heaters radiating

on the jth elementary surface pj (1 ≤ j ≤ N) for the fixed locations of heaters,

and Ijl the heat radiation intensity of the lth heater on the pj elementary surface.

Then the total radiation intensity Ij on the elementary surface pj is given by the

following relation (see in detail in [2])

Ij =
∑

l∈Lj

Ijl . (3)

The producer of artificial leathers recommends the constant value of heat radiation

intensity across the whole outer mould surface. Let us denote this constant value

as Irec. We can define F , the aberration of the heat radiation intensity, by the

relation

F =

∑N
j=1 |Ij − Irec|sj
∑N

j=1 sj
(4)

and the aberration F̃ by the relation

F̃ =

√

√

√

√

√

N
∑

j=1

(Ij − Irec)
2 sj . (5)

4. The optimization of the location of the heaters

We use a genetic algorithm for global optimization and subsequently the hill

climbing method for local optimization of the locations of heaters. These methods

are described in more details in [3] and in [5]. The location of every heater is defined

in accordance with the relation (1) by 6 parameters. Therefore 6M parameters are

necessary to define the locations of all M heaters. One chromosome represents one

individual (one possible location of the heaters). The population includes Q individ-

uals. The generated individuals are saved in the matrix BQ×6M . Every row of this

matrix represents one individual. We seek the individual ymin ∈ C satisfying the

condition

F (ymin) = min{F (y); y ∈ C}, (6)

where C ⊂ E6M is the searched set. Every element of C is formed by a set of 6M
allowable parameters and this set defines just one constellation of the heaters above

the mould. The function F is defined by (4) or by (5). The identification of the in-

dividual ymin defined by (6) is not realistic in practice. But we are able to determine

an optimized solution yopt. Now we describe particular steps of the genetic algorithm

that is used.

Genetic algorithm

Input: the specimen y1 (initial individual), ε1 - the specified accuracy of the calcula-

tion.
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Internal computation:

1. create an initial population of Q individuals,

2.a/ evaluate all the individuals of the population (calculate F (y) for every
individual y), b/ sort F (y) in the ascending order and organize y accordingly,

c/ store the individulas y into the matrix B,

3. repeat until min{F (y); y ∈ B} < ε1
a/ chose randomly between the crossover operation and the mutation operation,

b/ if the crossover operation is chosen then

randomly select a pair of individuals (parents),

execute the crossover operation and create two new individuals

else

randomly select an individual y, execute the mutation operation,

create two new individuals

end if,

c/ calculate F (y) for the two new individuals (penalize an individual in the case of

the collision of heaters or the collision of a heater and the mould surface), d/ sort as

in 2.b/, e/ take the first Q individuals with the best evaluation F (y) and store them

in the matrix B

end repeat.

Output: the first row of matrix B contains the best found individual.

To further optimize yopt delivered by the genetic algorithm, we apply the hill climb-

ing method.

Hill climbing algorithm

Input: yopt - the solution provided by the genetic algorithm, real suitable incre-

ments hi, where 1 ≤ i ≤ 6M , ε2 - the specified accuracy of the calculation.

Internal computation:

repeat until max{|hi|; 1 ≤ i ≤ 6M} < ε2
for i:= 1 to 6M do

a/ while F (yopt) > F (yopt + hi) do yopt := yopt + hi

end while,

b/ hi := −hi/2
end for

end repeat.

Output: the best found individual.

The individual yopt is the final optimized solution and includes information about

the location of every heater in the form (1).
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5. A practical example

Now we describe a practical example of the heating of an aluminium mould.

The volume of the mould is 0.8 × 0.4 × 0.15[m3], the number of elementary sur-

faces is N = 2, 064; the recommended heat radiation intensity is Irec = 47[kW/m2].

We use 16 infrared heaters of the same type (producer Philips, capacity 1, 600[W],

length 15[cm], width 4[cm]). In the first step of our procedure we construct a speci-

men y1 (this individual corresponds to the default locations of heaters). The centers

of the heaters lie in the plane parallel to the x1x2-plane and at a distance of 10[cm]

from the center of gravity Tj of the elementary surface pj with the highest value x
Tj

3

(1 ≤ j ≤ N). All the heaters have r = (1, 0, 0) and u = (0, 0,−1) (that is, all the

heaters radiate downwards and they are parallel to the axis x1). The population

contains 30 individuals (Q = 30).

For the initial specimen y1 and F given by (4), we get F (y1) = 20.74. We obtain the

optimized individual yopt with value F (yopt) = 3.39 after 100, 000 iterations of the

genetic algorithm and 5, 000 iterations of the hill climbing method (two individuls

are generated during every iteration of the genetic algorithm and one individual is

generated during every iteration of the hill climbing method). The value F (yopt) de-
pends on the number of iterations of the genetic algorithm and hill climbing method

(see Figure 2).

0 2 4 6 8 10 12

x 10
4

0
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10

15

20

25

number of iterations

F
(y

op
t)

Figure 2: Dependence of F (yopt) on the number of iterations.

The graphical representation of heat radiation on the mould surface (levels of

radiation intensity in [kW/m2] correspond to shades of grey colouring) and the lo-

cations of the heaters corresponding to the individual yopt are displayed in Figure 3.

Let us replace F by F̃ , see (5), and let us execute the same number of iterations.

We get the following results: F̃ (y1) = 25.13; F̃ (yopt) = 3.34.
On the basis of our numerical tests, we have obtained results sufficiently accurate

for the needs of production.
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Figure 3: Heat radiation intensity([kW/m2]) on the mould surface and the location

of the heaters corresponding to the individual yopt.
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[4] Mlýnek, J., Srb, R.: The Process of aluminium moulds warming in the car in-

dustry. In: Journal of Automation, Mobile Robotics and Intelligent Systems, In-

dustrial Research Institute for Automation and Measurements PIAP, Warsaw,

Vol. 6, No. 2, 2012, 47–51.
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Moravian College Olomouc,

Jeremenkova 40, 771 00 Olomouc, Czech Republic,

vratislava.mosova@mvso.cz

Abstract

Solution of a boundary value problem is often realized as the application of the

Galerkin method to the weak formulation of given problem. It is possible to generate

a trial space by means of splines or by means of functions that are not polynomial and

have compact support. We restrict our attention only to RKP shape functions and

compactly supported wavelets. Common features and comparison of approximation

properties of these functions will be studied in the contribution.

1. Introduction

One of the possibilities to solve boundary value problems is the Galerkin method.

Céa’s lemma (1964) says that the error in the Galerkin method depends on how well

the exact solution is approximated by elements of the trial space. There is a lot

of possibilities how to generate such space. For example, it is possible to deal with

compactly supported wavelets or with RKP shape functions. The solving of some

boundary value problems by using wavelet bases can be found in [5], [2] and by using

RKP shape functions for example in [4], [1]. Our aim is to introduce wavelets and

RKP shape functions and compare their properties.

The outline of the next text is as follows. Some basic information on the construc-

tion and properties of the wavelet basis are presented in Section 2. The construction

and properties of the RKP shape functions are described in Section 3. Finally,

a comparision of properties of the wavelets and the RKP shape functions is shown

in Section 4.

2. Wavelets

Wavelets have grown up not only from theoretical mathematical study but also

from practical reasons. The technique of the wavelet transform is used in signal

processing. It is a very effective tool, because it gives possibility to change window

during the analysing of signal (in contrast with the Fourier transform). It allows to

extract information from many different kinds of data, it can help to analyze voice
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or to compress pictures. It can also serve to analyze variability, to remove noise

or to detect significant moments in the time series that are used in economy. In

numerical mathematics, the wavelet bases can be used by the solution of boundary

values problems, where they provide perfect space and spectral localization. They

combine the advantage of the basis used in the FEM with the advantage of the basis

used in spectral analysis.

Construction of the wavelet system

A function ψ ∈ L2(R) is called the basic wavelet, if the condition of stability

∫

R

|ψ̂(ξ)|2

|ξ|
dξ <∞ (1)

is satisfied.

In this text, we will deal with two types of the basic wavelets – the scaling

function ϕ and the associated wavelet ψ.
It is possible to receive an orthonormal basis in L2(R) by means of the multi-

resolution analysis (MRA). The MRA is an efective but not the only one way to

obtain an orthogonal wavelet system. Each wavelet that quickly decreases to zero

and that is smooth enough can be constructed by it.

In MRA, the spaces Vj ⊂ L2(R) (j ∈ Z) that satisfy

Vj ⊂ Vj+1;
⋂

j∈Z

Vj = {0};
⋃

j∈Z

Vj = L2(R);

∃ϕ ∈ V0 : {ϕ(x− k)}k∈Z is a complete orthogonal set in L2(R); (2)

f ∈ V0 ⇔ f(2jx) ∈ Vj

are constructed.

It follows from the properties given above that there exists the subspace Wj

orthogonal to Vj such that Vj+1 = Vj ⊕Wj . It means that Vj+1 = V0 ⊕W0 ⊕W1 ⊕
. . .⊕Wj . Next, we put

Vj = {ϕj,k}j,k∈Z, where ϕj,k(x) = 2j/2ϕ(2jx− k), (3)

Wj = {ψj,k}j,k∈Z, where ψj,k(x) = 2j/2ψ(2jx− k). (4)

If a boundary value problem is solved numerically, it is suitable to generate the

trial space by wavelets that have compact support. In this case, the scaling function ϕ
and the associated wavelet have to satisfy

ϕ(x) =
D−1
∑

k=0

akϕ1,k(x), ψ(x) =
D−1
∑

k=0

bkϕ1,k(x), where bk = (−1)k a1−k. (5)

Example The class of Daubechies wavelets (including coiflets and symlets) can be

received by the MRA. The compactly supported Daubechies wavelet of order 4 to-

gether with its scaling function are in Figure 1.
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Figure 1: The Daubechies wavelet Db4

Properties of wavelets

1) It holds for wavelets defined by (5) that suppϕ(x) = 〈0, D − 1〉, suppψ =

〈1− D
2
, D
2
〉. (D = 2N for the Daubechies wavelets of order N.)

2) The functions {ϕ0,k}k∈Z , {ψl,k}k∈Z, l=1,...j form an orthonormal basis in Vj+1 ⊂
L2(R). It is possible to express an approximation of a function u ∈ L2(R) by means

of

ũ(x) =
∑

k∈Z

c0,kϕ0,k(x) +
j
∑

l=1

∑

k∈Z

cl,kψl,k(x). (6)

3) We can see from the relation (3) that the functions {ϕ0,k}k∈Z are translation

invariant: ϕ0,k+m(x) = ϕ0,k(x−m).
4) The approximation properties of the MRA are given in the next theorem (see [5]).

Theorem 1. Let {Vj} be the MRA with ϕ ∈ L1(R), ϕ be compactly supported, the

value of the Fourier transform ϕ̂(0) = 1 and L ≥ 1, then the next conditions are

equivalent

(a) The Strang-Fix condition of order L− 1: Function ϕ satisfies

dq

dξq
ϕ̂(2nπ) = 0, n 6= 0, n ∈ Z, q = 0, . . . , L− 1. (7)

(b) The quasi-reproducing condition of order L− 1: Function ϕ satisfies
∑

k∈Z

kqϕ(x− k) = xq + pq−1(x) for all x ∈ R, q = 0, . . . , L− 1. (8)

Here pq−1 is a polynomial that has order less or equal q − 1.
(c) The vanishing moment condition: It holds for the qth moment of the associated

wavelet

Mq(ψ) =
∫

R
xqψ(x) dx = 0 ∀q = 1, . . . , L− 1. (9)

(d) There exist coeficients cj,k, j, k ∈ Z, and constants Cs, such that it holds for all

u ∈ WL,2(R)

‖u−
∑

k∈Z

cj,kϕj,k‖W s,2(R) ≤ Cs2
−j(L−s)|u|WL,2(R) for s = 0, . . . , L− 1. (10)
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Remark The construction of orthogonal wavelet bases on the real line was described

in the previous text. Note that if boundary value problems are solved, it is necessary

to adapt wavelet bases to the interval. Some problems can occur when the wavelets

are used directly as trial functions. For example the introduction of Dirichlet bound-

ary conditions is difficult. Lower order wavelets cannot be employed due to the lack

of regularity. Also the request for orthogonality in (2) is too strong. It appears

better to use Riesz wavelet bases than orthonormal bases given above by solving

BVP’s. Especially the biorthogonal multiwavelets on the basis of splines are used

successfully.

3. RKP-shape functions

Meshless methods were developed to find the solution of boundary value problems

for differential equations that describe practical problems such as large deformation,

crack propagation or moving boundary problems where it is necessary to overmesh

during computation. The fact that meshless methods need no explicitly given mesh

avoids or greatly simplifies this meshing task. The trial space is generated by shape

functions in meshless methods. There is a lot of meshless methods and each of them

constructs the shape functions in a different way. For instance the Reproducing

Kernel Particle Method (RKPM) belongs to meshless methods that are based on

kernel approximation.

Construction of shape functions

Let x1, . . . , xN be particles in 〈a, b〉, w(x) be a weight function (i.e. continuous,

compactly supported function) and p(x) = (p0(x), . . . , ps(x)) be a polynomial basis

of order s (i.e. components pj ∈ P
≤s, s ≥ 0.)

The one dimensional RKP shape function Φ
[α]
j (x) of order α, 0 ≤ α ≤ s, which is

associated with the particle xj , is defined by

Φ
[α]
j (x) = α!p

(

x− xj
ρ

)

bT
α(x)w

(

x− xj
ρ

)

∆xj . (11)

Here ρ > 0 is a dilatation parameter, ∆xj is the quadrature weight and vector bα(x)
is the solution of the linear equations

M(x)bT
α(x) =

(

p(α)(0)
)T
, (12)

where M(x) =
∑N

j=1 p
T
(

x−xj

ρ

)

p
(

x−xj

ρ

)

w
(

x−xj

ρ

)

∆xj and p(α)(x) = dα

dxαp(x)

The vector bα(x) is constructed in such a way that the shape functions Φ
[α]
j (x)

reproduce polynomials of order s− α.

If we use (12), (11) and put pβ
(

x−xj

ρ

)

=
(

x−xj

ρ

)β
, 0 ≤ β ≤ s, we can see that

the condition (12) leads to system

N
∑

j=1

(

x− xj
ρ

)β

Φ
[α]
j (x) = α!δβ,α, 0 ≤ α, β ≤ s. (13)
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Example The system of reproducing RKP shape functions Φ
[0]
3 and Φ

[1]
3 is given in

Figure 2. They are constructed on the interval 〈0, 1〉 for N = 5 equidistant particles,

p(x) = (1, x), w(x) =

{

(1− x2)2 if |x| ≤ 1

0 if |x| > 1
and ρ = 0.3.

Φ
[0]
3 (x)

Φ
[1]
3 (x)

Figure 2: Shape functions

Properties of RKP shape functions

Suppose that RKP shape functions are defined by (11), (12).

1) The continuous version of function Φ
[0]
0 satisfies the condition of stability (1) for

the basic wavelet (see [3]).

2) The support and smoothness of Φ
[0]
j are the same as the support of the given

weight function w.
3) The functions Φ

[0]
j are translation invariant for uniformly distributed particles, i.e.

Φ
[0]
j+k(x) = Φ

[0]
j (x− xk), where xk = kh, k ∈ Z (see [1]).

4) From the conditon (13) one can receive that the shape functions Φ
[0]
j are repro-

ducing of order s i.e. they reproduce polynomials from P
≤s exactly (see [3]).

5) It is possible to receive from (13) that
∑N

j=1Φ
[0]
j (x) = 1 and

∑N
j=1Φ

[α]
j (x) = 0. It

means that the shape functions Φ
[α]
j , 0 ≤ α ≤ s, form the partition of unity and an

approximation of a function u ∈ W 1,2(Ω) can be supposed in the form

ũ(x) =
N
∑

j=1

c0,jΦ
[0]
j (x) +

s
∑

α=1

N
∑

j=1

cα,jΦ
[α]
j (x). (14)

6) Because the property ”reproducing order” is a particular case of ”quasi-reproducing

order”, the error of approximation can be determined from the Strang-Fix theorem

(see [1]).

Theorem 2. Let particles {xi} be uniformly distributed, Φ
[0]
j ∈ W q,2(R), q ≥ 0, be

reproducing of order s. Then for each u ∈ W k+1,2(R) there are C, cj ∈ R such that

‖u−
∑

j∈Z

cjΦ
[0]
j ‖W s,2 ≤ C hk+1−s‖u‖W k+1,2 for 0 ≤ s ≤ min{q, k + 1}. (15)
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4. Conclusion

In this contribution the construction of compactly supported wavelet and RKP

shape function systems is described. Then a short overview of properties of these

systems is given. It is possible to say that even though these systems are built in

different ways, they have some common features.

For example: The basic functions Φ
[0]
0 behave similarly as the scaling functions ϕ.

It is possible to obtain the constructed systems from these basic functions using

translation and dilatation. The basic functions are able to approximate polynomials

of the order, which corresponds to the order of reproducing conditions that they

satisfy. The functions ψj,k and Φ
[α]
j , α 6= 0, satisfy the vanishing moment condition.

It is possible to carry out the estimate of approximation errors using the Strang-Fix

theorem.

However, it is possible to find some differences between wavelet bases and RKP

shape functions that are used for solution of BVP’s. For example, biorhotgonal

wavelet bases are Riesz bases, but the sequence {Φ
[α]
I (x), α ≥ 0} is only a frame.

Wavelet basis provides the possibility to compute effectively coefficients of a stiffness

matrix, but the RKP shape functions do not offer any similar advantage. On the

other hand, it is possible to construct RKP shape functions that have the desired

order of continuity and that are not linked to any explicitly given mesh.
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Abstract

We propose a modification of MPGP algorithm for solving minimizing problem

of strictly convex quadratic function subject to separable spherical constraints. This

active set based algorithm explores the faces by the conjugate gradients and changes

the active sets and active variables by the gradient projection with the Barzilai-

Borwein steplength. We show how to use the algorithm for the solution of sepa-

rable and equality constraints. The power of our modification is demonstrated on the

solution of a contact problem with Tresca friction.

1. Motivation

Let us consider simple contact problem with given friction. The block of homo-

geneous material has prescribed zero displacements on boundary ΓD and imposed

traction F on ΓF . The part ΓC denotes the part of boundary that may get into

contact with rigid obstacle. The block is attracted to obstacle by gravity force FG.

F

ΓD

ΓC
x

y

z

rigid obstacle

ΓF
Fg

Figure 1: Contact problem with rigid obstacle and given friction.
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We solve discretized form of the problem using FEM. This technique leads to

optimizing problem (see [3])

ū := min
u∈Ω

(f(u) + jh(u)) , f(u) :=
1

2
uTKu− fTu, jh(u) :=

mc
∑

i=1

ψi‖T iu‖, (1)

where N ∈ N is number of used nodes and n = 3N is number of variables, u ∈ R
n

is a vector of unknown displacements, Ω := {u ∈ R
n : uz ≥ −c} is set of feasible u,

c ∈ R
+
0 is a distance between body and rigid obstacle, f : Rn → R denotes function

of total potential energy, K ∈ R
n,n is a symmetric-positive definite stiffness matrix,

f ∈ R
n is vector of internal forces resulting from the stresses imposed on the structure

during a displacement, jh : R
n → R is numerical integration of functional describing

the friction forces in the weak formulation of the problem, T i ∈ R
2,n are formed by

appropriately placed multiples of the unit tangential vectors in such way that the

jump of tangential displacement due to displacement u is given by T iu, ψi ∈ R is

slip bound associated with T i.

At first denote mc ≤ N as number of FEM nodes in ΓC .

Our problem has simple geometry, so we can simply choose n := [0, 0,−1] as normal

vector and t1 := [1, 0, 0], t2 := [0, 1, 0] as tangential vectors for every FEM node

in ΓC .

FEM node t
t

n

1

2

Figure 2: Normal and tangential vectors on ΓC .

So for every contact node (i-th node from ΓC) is T i ∈ R
2,n given by sparse matrix

with 1 in first row on appropriate x-coordinate of i-th node and in second row on

appropriate y-coordinate of i-th node. Then we assume that T :=
[

T T
1 , . . . ,T

T
mc

]T

is the full rank matrix.

In our problem with Dirichlet conditions, f is strictly convex quadratic function

(i.e. quadratic function with symmetric positive-definite matrix K), so in next

eductions, we can use standard inversion K−1.

We can express the non-differentiable term jh in (1) by (see [7])

jh(u) =
mc
∑

i=1

max
‖τi‖≤ψi

τ Ti T iu, (2)

where τ i ∈ R
2 are regulation variables.
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2. Saddle point problem equivalency and dual formulation

At first, we denote function and vector

L̃(u, τ ) := f(u) + τ TTu, τ := [τ T1 , . . . , τ
T
mc
]T . (3)

Then the conditions ‖τ i‖ ≤ ψi can by written in form

√

τ 22i−1 + τ 22i ≤ ψi, i = 1, . . . , mc, (4)

where τj is j-th component of τ .

Now we can simplify the notation, we denote set of feasible τ as

Λτ :=

{

√

τ 22i−1 + τ 22i ≤ ψi, i = 1, . . . , mc

}

. (5)

After substituing (2) into (1) and using (3),(4) we get

min
u∈Ω

(f(u) + jh(u)) = min
u∈Ω

(

f(u) +

mc
∑

i=1

max
‖τi‖≤ψi

τ Ti T iu

)

= min
u∈Ω

sup
τ∈Λτ

L̃(u, τ ). (6)

If we consider L̃(u, τ ) as Lagrange function and τ as vector of Lagrange multipliers

(in notation (3)), we can use the classical duality theorem (see [4]) to reformulate

problem (6) and get

min
u∈Ω

sup
τ∈Λτ

L̃(u, τ ) = max
τ∈Λτ

min
u∈Ω

L̃(u, τ ). (7)

Now we can include condition u ∈ Ω by creating new Lagrange multipliers.

max
τ∈Λτ

min
u∈ΩC

L̃(u, τ ) = max
τ∈Λτ ,λC≥0

min
u∈Rn

(

L̃(u, τ ) + λTC(Bu− c)
)

, (8)

where matrix B ∈ R
mc,n and vector c ∈ R

mc are constructed in such way, that

{u ∈ R
n : Bu ≤ c} = Ω.

Due to geometry in our problem we can construct B very simply. B is a sparse

matrix with −1 in every i-th row (which is corresponding to i-th node in ΓC) on

appropriate z-coordinate of i-th node (see former choice of normal vectors for nodes

in ΓC).

So problem (1) is equivalent to the saddle point problem

(ū, λ̄) := argmax
λ∈Λ

min
u∈Rn

L(u,λ), (9)

where

L(u,λ) := f(u) + λT (B̃u− c̃) (10)
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is Lagrange function, which includes both of friction and non-penetration conditions,

and

λ :=

[

τ

λC

]

, B̃ :=

[

T

B

]

, c̃ :=

[

o

c

]

,

Λ := {[τ ,λC ] ∈ R
3mc :

√

τ 22i−1 + τ 22i ≤ ψi, i = 1, . . . , mc,λC ≥ o}.

Now we are going to solve problem (9) using dual formulation, dual function and

KKT conditions (again can be found in [4]).

At first we induce first Karush-Kuhn-Tucker condition (the minimizer ū of func-

tion L(u, .) satisfy state of stationary point - we put part of gradient of L corre-

sponding to derivation with respect to components of u equal to zero)

∇uL(u,λ) = Ku− f + B̃
T
λ = o ⇒ ū = K−1

(

f − B̃
T
λ
)

(11)

and induct this into Lagrange function (10) and make some simplifications. We get

L(ū,λ) = L(K−1
(

f − B̃
T
λ
)

,λ) = −
1

2
λT B̃K−1T Tλ+ λT B̃K−1f −

1

2
fTK−1f .

We get function of only one variable λ. Our task is to find maximizer (see saddle-

point problem (9)), so we can omit the constant term and change signs. Then λ̄ solves

minimization problem

λ̄ = argmin
x∈Λ

Θ(x), Θ(x) :=
1

2
xTAx− xTb, (12)

where we denoted

A := B̃K−1B̃
T
, b := B̃K−1f .

After solving minimizing problem (12), the corresponding solution ū of primary

problem (1) can be evaluated using (11).

Obviously A ∈ R
3mc,3mc is symmetric positive-definite matrix and problem (12)

is the problem of minimizing strictly convex quadratic functions with separable

quadratic constraints (QPQC) combined with bound constraints.

3. MPGP and projected Barzilai-Borwein algorithm

Now we are ready to introduce Modified proportioning with gradient projections

algorithm (MPGP) (also included in [4, 3]), which convergence for QPQC was anal-

ysed in [5]. This active-set based algorithm solves problem on a free set using Con-

jugate gradient (CG) method (eventually do only halfstep) and finalize optimizing

process on active set using gradient projection method with constant step-size.

Our modification lies in replacement of constant step-size in projection step by

step-size used in recently developed Spectral Projected Gradient Method (SPG,

see [2]). This method is based on projected version of Barzilai-Borwein algorithm
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(see [1]) combined with additional modified GLL line-search (see [6]). This addi-

tional line-search does not affect our algorithm, because it usually evokes leaving the

border of feasible set, i.e. in our case it evokes extension of free set and restart CG

method. So we use only first spectral projected step.

1: Choose x0 ∈ Ω, α ∈ (0, 2‖A‖−1), δ ∈ (0, 1/2〉
2: αbb := α
3: k := 0

4: while ‖xk − P (xk − gk)‖ ≥ ǫ‖b‖ do

5: if 2δgTk g
P
k ≤ ‖ϕ(xk)‖

2 then

6: CG step or CG halfstep.

7: make CG step to solve problem on free set.

8: if this step means leaving Ω, do only a half-step and restart CG.

9: k := k + 1

10: else

11: Barzilai-Borwein gradient projection step.

12: xk+1 := P (xk − αbbgk)
13: s := xk+1 − xk
14: αbb := sTs/sTAs

15: restart CG

16: k := k + 1

17: end if

18: end while

In our algorithm we use these notations

gk := Axk − b, g̃k :=
1

α
(xk − P (xk − αgk)) , gPk := ϕ(xk) + β(xk),

ϕ and β are free gradient and chopped gradient defined in [4].

4. Numerical experiments

In our numerical experiment, we choose steel brick (E = 2.105, µ = 0.35,
ρ = 7.85.10−2) and force F = 5.103.
For generating discretized problem we used MatSol library (see [8]).

We require accuracy ǫ = 10−4. We make two tests – in first we choose ψ = 900, in

second ψ = 15.103.
For MPGP we used parameters δ := 1/2, α := 1.95/‖A‖. For SPG were used

parameters M :=1, αmin :=10−6, αmax :=106, γ :=10−4, σ1 :=0.1, σ2 :=0.9, α0 :=1.

In Tables 1 and 2, N is discretization parameter. Every edge of brick was divided

into N intervals, so the number of all FEM nodes in model is given by (N + 1)3.

Because the problem is computed in 3D, the number of primal variables is 3(N+1)3.

The number of FEM nodes in ΓC is given by the number of nodes on bottom side
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ψ = 900

N primal dual SPG MPGP MPGP-BB

it GLL f(x) it cg half proj it cg half proj

4 375 75 36 9 44 5176 0 1 5175 41 0 1 40

6 1029 147 45 20 64 2746 0 1 2745 57 0 1 56

8 2187 243 27 12 38 1236 0 1 1235 51 0 1 50

10 3993 363 33 15 47 661 0 1 660 40 0 1 39

Table 1: Test with small radius.

ψ = 15000

N primal dual SPG MPGP MPGP-BB

it GLL f(x) it cg half proj it cg half proj

4 375 75 1566 977 2542 43 33 9 1 43 33 9 1

6 1029 147 923 553 1475 48 29 18 1 48 29 18 1

8 2187 243 588 366 953 53 24 28 1 53 24 28 1

10 3993 363 1020 547 1566 101 40 46 15 73 27 40 6

Table 2: Test with larger radius.

of brick, i.e. mc = (N + 1)2. So the number of all Lagrange multipliers is given by

3mc = 3(N + 1)2. This number is a dimension of dual problem.

For SPG algorithm we counted outer iterations and denoted this number by

it. In the tables, one can find also number of all additional GLL-search iterations

and a number of evaluations of cost function denoted by f(x). For MPGP and

MPGP-BB we denoted the number of all iterations by it and we counted also each

type of iterations.

These tables show typical performance properties of algorithms.

If the radius of quadratic constraints is small (see Table 1), the type of the most

of the iterations of MPGP and MPGP-BB is projection. Because MPGP-BB in

projection uses similar rule for choosing step-size as SPG, the number of iterations

of these two algorithms is similar. Choosing the constant step-size in MPGP is not

so efficient.

If the radius of quadratic constraints is larger (see Table 2),MPGP andMPGP-BB

are able to use more CG-iterations. That is the reason, why it is faster than non-

monotone gradient descend method SPG.

5. Conclusions

Our numerical experiments predicate better performace of modified MPGP with

BB step-size then original constant step-size for solving QPQC problems. But proof

of convergence need be established, because the proof of convergence of original

SPG in [2] is based on Armijo condition in GLL in additional line-search, but in our

modification we did not use it.
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References

[1] Barzilai, J. and Borwein, J.M.: Two-point step size gradient methods. IMA

Journal of Numerical Analysis 8 (1988), 141–148.

[2] Birgin, E., Mart́ınez, J., and Raydan, M.: Nonmonotone spectral projected gra-

dient methods on convex sets. SIAM Journal on Optimization 10 (2000), 1196–

1211.

[3] Dostál, Z. et al.: A theoretically supported scalable tfeti algorithm for the solution

of multibody 3d contact problems with friction. Computer Methods in Applied

Mechanics and Engineering 205208 (2012), 110–120.

[4] Dostál, Z.: Optimal quadratic programming algorithms: with applications to vari-

ational inequalities. Springer Publishing Company, Incorporated, 2009, 1st edn.

[5] Dostál, Z. and Kozubek, T.: An optimal algorithm and superrelaxation for min-

imization of a quadratic function subject to separable convex constraints with

applications. Math. Program. 135 (2012), 195–220.

[6] Grippo, L., Lampariello, F., and Lucidi, S.: A nonmonotone line search technique

for newtons method. SIAM Journal on Numerical Analysis 23 (1986), 707–716.
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Abstract

The current powerful graphics cards, providing stunning real-time visual effects

for computer-based entertainment, have to accommodate powerful hardware compo-

nents that are able to deliver the photo-realistic simulation to the end-user. Given

the vast computing power of the graphics hardware, its producers very often offer

a programming interface that makes it possible to use the computational resources of

the graphics processors (GPU) to more general purposes. This step gave birth to the

so-called GPGPU (general-purpose GPU) processors that – if programmed correctly –

are able to achieve astonishing performance in floating point operations. In this paper

we will briefly overview nVidia CUDA technology and we will demonstrate a process

of developing a simple GPGPU application both in the native GPGPU style and in

the add-ons for Matlab (Jacket and Parallel Toolbox).

1. Introduction

While ‘standard’ modern CPUs provide users with growing computational power,

many scientists currently migrate towards general-purpose GPU (GPGPU) applica-

tions [3], using GPUs as parallel accelerators for memory-dense, floating-point in-

tensive, applications. An accelerated linear algebra package exploiting the hybrid

computation paradigm is currently under development [8] and GPGPU accelerators

are becoming a tool of choice in many computationally-bound research tasks.

The concept of a GPGPU evolved from the needs of 3D-graphics-intensive applica-

tions that dictated the design of the processor such that most transistors were ded-

icated to the data processing, contrary to a regular CPU. The GPUs were then

designed to be able to execute data-parallel algorithms on a stream of data, and

consequently, the GPGPU processors are sometimes called ‘stream processors’ and

are (not quite correctly) considered to be representatives of the SIMD processor

architecture. The currently dominant architectures for GPGPU computing are the

nVidia CUDA [5] and the AMD APP (formerly ATI Stream) [1].

The intrinsic parallel structure of a GPU (see Figure 1) allows a significant speed-

up in comparison to the multi-threaded single-processor architecture. The GPU

programs are called kernels and the processor typically processes only one kernel at
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Figure 1: Thread processing cluster of a GTX280 GPU configured in ‘compute mode’.

The cluster contains three 8-core streaming multiprocessors, each of them has 16kB

of fast local memory shared to all 8 cores. Adapted from [2].

a time by running it on several streaming multiprocessor units that form the so-called

thread block. Every core in the GPU can access small but fast shared memory (local

memory of a multiprocessor), large and slow main memory, constants can be placed

to read-only and cached constant memory.

Although it is relatively easy to setup and perform basic operations with GPGPU

even using the low-level programming (mostly ANSI C variants), it quickly becomes

more complex when dealing with more demanding numerical problems – sometimes

a small change in the order of instructions can have a dramatic impact on the overall

performance. Additionally, special care must be taken when performing memory

operations:

• due to the relatively slow memory transfer, data transfers between the host sys-

tem and the GPU device shall be as few as possible, and shall be asynchronous

if possible,

• improper kernel code design with respect to the operation on different memory

types and ignoring memory access coalescing on the GPU device can cause

a significant performance loss,

• shared memory is organised into banks and accessing elements not consecu-

tively will cause a bank conflict.

The paper is composed as follows. The next section will introduce the covariance

function, which is one of the bottlenecks of the modelling systems with Gaussian-

process models. Different configurations of computation are described in Section 3,

and the demonstration with a case study is described in Section 4. Conclusions are

given at the end of the paper.

2. Modelling of dynamic systems with Gaussian processes

A Gaussian process [7] is a collection of random variables that have a joint mul-

tivariate Gaussian distribution. Assuming a relationship of the form y = f(x)
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between an input x and an output y, we have y1, . . . , yn ∼ N (µ(x),Σpq), where

Σpq = C(xp,xq) gives the covariance between the output points corresponding to the

input vectors xp and xq and N (µ,Σ) denotes the multivariate Gaussian distribution

with the mean vector µ and covariance matrix Σ.

C(xp,xq) can be any function having the property of generating a positive definite

covariance matrix. A common choice is [7]

C(xp,xq) = v1 exp

[

−
1

2

D
∑

d=1

wd(xdp − xdq)
2

]

+ δpqv0, (1)

where Θ = [w1, . . . , wD, v0, v1]
T are the ‘hyperparameters’ of the covariance function,

D is the dimension of the input regressors and δpq = 1 if p = q and 0 otherwise.

The square exponential covariance function represents the smooth and continuous

functional part and the constant covariance function represents the noise part, when

it is presumed to be the white noise.

For a given problem, Θ is identified using the data at hand and the function (1)

is being evaluated many times before the process converges. This is one of the

bottlenecks of the whole identification process of Θ (although it is not the major

one, unfortunately there are operations that can reach even O(n3) [6], where n is the

number of data used for identification).

3. Acceleration with various programming effort

The identification of a Gaussian-process model can be accomplished using a set

of Matlab routines [4] that are an upgrade to the GPML toolbox [7] for machine

learning with Gaussian processes. We will use this code base to demonstrate the

process of upgrading the standard Matlab code to GPGPU code both with Jacket

and Parallel Toolbox.

The code of the GPML toolbox relies heavily on linear algebra operations, which

are considered to be fairly optimised even in the interpreted Matlab environment.

We will therefore study the following scenarios which are ordered according to the

working effort that has to be spent before actual computation:

Matlab on CPU only. We will use the native Matlab code on a multiple-core

CPU. No changes are necessary.

Matlab on CPU using MEX file. We will use the original GPML MEX code

on a multiple-core CPU. The publicly available ANSI C source code of a single MEX

subroutine has to be compiled for the target architecture.

Matlab using Parallel Toolbox. We will use Mathworks’ original interface

to GPU and create our own replacement of the covariance code to compute the co-

variance matrix. This can be accomplished by simply retyping all GPU variables to

gpuArray, carrying out the computation, and calling gather to transfer the covari-

ance matrix back to the CPU.
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Matlab using Jacket. We will update the code of the covariance routine to

use the Jacket library, a third-party extension for GPU acceleration of Matlab code

(see http://www.accelereyes.com/). We will compute the covariance matrix on

a GPU using small modifications of the original GPML code: (1) all variables that

will reside on GPU have to be retyped to gdouble, (2) we have to check that CPU and

GPU variables do not occur within a single formula, and (3) the resulting covariance

matrix has to be fetched back to the CPU by retyping it back to double.

Matlab using GPU MEX file. We will use our own replacement of covariance

code to compute the covariance matrix on GPU using a hand-optimised GPU kernel.

The kernel has been written in ANSI C, manually debugged and hand optimised for

performance. Then a MEX file has to be created that takes care of moving data

to GPU, calling the kernel and copying the result back to the CPU memory. The

custom GPU kernel for the covariance function (1) relies on a coalesced memory

access to move up to 16 elements of xp and xq to the shared memory of the thread

block and computing an up to 16×16 sub-matrix of C in a single GPU kernel block.

The main speedup is achieved by utilising as many kernels in a block as possible for

a coalesced read of the elements from x into the shared memory, and by moving the

elements of Θ to the constant memory as they are used by all the invoked kernels.

In our tests, a standard PC equipped with an Intel i5/750 proces-

sor (42.56GFLOPS in both single and double precision) and 4GB of RAM (band-

width 17GB/s) will be used. The GPU was nVidia GTX 275, which includes

240 processor cores (1010 GFLOPS in single, but only 124 GFLOPS in double pre-

cision; the double-precision performance is by design 8× lower than that of a single-

precision computation [2]) running at 1404 MHz, with the memory interface run-

ning at 1134MHz. The board contains 896MB of GDDR3 memory (bandwidth

127GB/s), every processor may use up to 16 kB of fast shared memory. All compu-

tations will be carried out in Matlab R2012a in double-precision arithmetics as most

current GPUs have already an unlimited support for doubles.

4. Case study

The following example demonstrates the potential of the above described sce-

narios for accelerating the computation of covariance function (1). We will consider

computing mutual covariances of an output sequence y[k] generated by

y[k + 1] =
y[k]

1 + y2[k]
+ u3[k] + ǫ (2)

where ǫ is the normally-distributed white noise with σ = 0.05 that contaminates

the system response and the sampling time is one second. The input signal u[k] is
uniformly distributed noise in the interval [−1.5, 1.5] sampled every 10-th step to

prevent oscillations in the system.

The comparison of the computation times for the computation of one covariance

matrix as a function of the length of the y[k] sequence is given in Figure 2. We
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Figure 2: Computation times for the model identification versus input data dimen-

sion for different hardware configurations (left). Relative speed-ups of different hard-

ware configurations with respect to the native CPU computation (right). Note that

the GTX275 GPU has been used in the double-precision mode, where it reaches only

1/8 of the single-precision performance – hence, in a single-precision arithmetic,

a GPU would be even more significantly faster than a CPU.

can see that for smaller dataset sizes below approximately 500 elements the native

CPU computations may be faster than the MEX and GPGPU code, while for larger

datasets the GPU-accelerated computations outperform the CPU by a factor up

to 20.

The relatively poor performance for smaller input sizes is mainly due to the

initialisation overhead required by the GPU and MEX code and due to the overhead

of GPU data transfer (the overhead is almost 90% of the total time for input length

100 and it is still about 30% for input length 5000). The computation is faster on

the host CPU unless this overhead can be eliminated or unless it represents a minor

part of the whole computation time. Notice also the poor performance of the Parallel

Toolbox code which is due to poor implementation of repmat() on GPU and the

fact that probably due to memory leaks in the GPU code the maximum length of

the input vector was 3500.

5. Conclusions

This paper provides a computational-time demonstration of how general-purpose

graphics processors (GPGPU) may be used to accelerate a computation by offloading

the most computational intensive parts of the code to the graphics hardware. The

demonstration was performed from the user point of view to test the usability of

different computational platforms for the Gaussian process model identification and
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simulation. We can see that using a GPGPU computing architecture has its benefits,

even in cases when the user is no expert in GPU computing: using the commercial

Jacket library for Matlab or possibly Matlab Parallel Toolbox makes it possible to

achieve speedup over 10 with virtually no or moderate Matlab code changes. The

best results are of course provided by the hand-crafted code that has been optimised

for the GPU. However, producing such a code requires a significant programming

effort.

Source codes of all tested scenarios can be downloaded from http://staff.

utia.cas.cz/prikryl/panm16.zip.
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Abstract

We introduce a new way of the analysis of iterative aggregation-disaggregation

methods for computing stationary probability distribution vectors of stochastic ma-

trices. This new approach is based on the Fourier transform of the error propagation

matrix. Exact formula for its spectrum can be obtained if the stochastic matrix is

circulant. Some examples are presented.

1. Introduction

Iterative aggregation-disaggregation (IAD) methods are a popular tool for nu-

merical solution of stationary probability distribution vectors of stochastic matrices:

they search for a sufficiently good approximation of x fulfilling

Bx = x, eTx = 1, (1)

where B is an irreducible column stochastic matrix and e is a vector of all ones. B is

column stochastic if B ≥ 0 and eTB = eT . It is well known that the solution x
exists, is unique and positive [12].

The IAD methods work in a multilevel fashion. A set of aggregation groups

of unknowns is chosen. Each group represents one unknown on the coarse level.

A solution of the coarse problem is used for improving the approximate solution of

the original problem on the fine level. The idea is similar to the classical algebraic

multigrid (AMG) used for the solution of symmetric positive definite (SPD) prob-

lems [1, 2, 3, 4, 5, 7, 13]. The main difference is caused by the nonsymmetry of

stochastic matrices. While for the AMG methods the estimates in a corresponding

energy norm are utilized, the theoretical justifying the convergence of the IAD meth-

ods exploit completely different approaches. Unfortunately, there are no convergence

conditions for general IAD methods and for general stochastic matrices. In spite of

this, there are many numerical experiments confirming good efficiency of various
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IAD methods. The aim of this paper is to provide a theoretical background for some

observations made e.g. in [1, 3, 4, 5].

Let [B]rs denote the element of B in the row r and column s, similarly [x]r
is the rth element of vector x. If B is nonsymmetric, the preferable algorithm

of aggregation of unknowns into aggregation groups is according to their strong

connection [1, 3, 4, 5]: the unknowns [x]r and [x]s are strongly connected if [B]rs +

[B]sr ≫ 0. Then the IAD methods are reported to converge fast. But there is no

theoretical background given in the literature. In this paper we consider a special

N ×N stochastic matrix B, where

[B]rs = 1 if (r − s− 1)modN = 0, and [B]rs = 0 otherwise. (2)

Adding small perturbations to B gives rise to typical examples of slowly mixing

stochastic matrices for which the stationary iterative methods converge slowly. Such

matrices appear for example in queuing network applications. At the same time B
is a circulant matrix. While the stationary probability distribution of B is x = e/N ,

the solution for perturbations of B are not known a priori. But from the continuity,

similar quality is achieved for perturbations of B. Motivated by the Fourier transform

of AMG operators for circulant and Toeplitz SPD matrices [2], we use the Fourier

transform for the IAD methods and for circulant matrices. A scope of this paper

allows us to consider only two-level IAD methods. Our particular goal is to find the

optimal parameters in the IAD methods for B defined by (2).

The paper is organized as follows. In the next section the IAD methods and the

error propagation formula are recalled. In Section 3 the Fourier transform is used

for the error propagation matrix and its spectrum is computed. The optimal IAD

parameters are computed in Section 4. A short discussion concludes the paper.

2. Two-level IAD methods

Let us assume an irreducible N × N stochastic matrix B. Let pairwise disjoint

aggregation groups G1, . . . , Gn be chosen, ∪n
k=1Gk = {1, . . . , N}. Then a reduction

matrix R ∈ Rn×N is given by

[R]ij = 1 if j ∈ Gi,

= 0 otherwise.

A prolongation matrix S(y) ∈ RN×n is defined for any positive vector y ∈ RN by

[S(y)]ij =
yi

∑

k∈Gj
yk

if i ∈ Gj,

= 0 otherwise.

Matrix B1 = RBS(y) is an aggregated matrix corresponding to B and y. Of course,

P (y) = S(y)R is a projection.
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On the fine level, µ steps of some stationary iteration (we call it a basic iteration)

with matrix T are performed. We use Richardson iteration with T = αB+(1−α)I,
where I is the identity matrix and α ∈ (0, 1〉. A solution of the coarse problem with

matrix B1 is carried out exactly. One cycle of the IAD method is as follows.

One cycle of the IAD method: input xm > 0; output xm+1.

1. set B1 := RBS(xm) and solve B1z = z, eT z = 1 (coarse step)

2. y := S(xm)z (prolongation)

3. xm+1 := T µy (basic iterations)

It can be easily shown that the exact solution x is a fixed point of this computing

process. Moreover, the error of the approximation xm+1 is

xm+1 − x = J(xm)(xm − x)

[6], where

J(xm) = T µ(I − P (xm)(B − xeT ))−1(I − P (xm)). (3)

Since spectral radii ρ(J(xm)) are greater than one in general, we can study the

asymptotic (local) convergence properties by substituting the exact solution into (3)

instead of xm and computing the spectral radii of J(x). We say that the IAD method

is locally convergent if there exists a neighborhood U of x such that for any x0 ∈ U ,

the IAD method yields a convergent sequence with a limit x. A sufficient condition

for the local convergence is of course ρ(J(x)) < 1.

3. Fourier transform of the error propagation formula

The spectral analysis of the AMG methods for circulant and Toeplitz matrices

is based on the Fourier transform of the error propagation operator [2]. We apply

this idea to the IAD methods and compute spectra of matrices J(x) given by (3) if

the stochastic matrix B is circulant. As the first type we consider B defined by (2).

According to Theorem 1 a spectrum of J(x) can be expressed exactly which helps

us to see what are the values of µ and α resulting in the smallest ρ(J(x)). Adding

small perturbations to B does not change the convergence rates of the IAD method

significantly. Such matrices represent a kind of slowly mixing Markov chains [12]. For

the sake of simplicity we consider n = N/2 andGk = {2k−1, 2k}, k = 1, . . . , n, which
corresponds to the aggregation of unknowns according to their strong connections.

Let us denote the N ×N Fourier matrix by FN , where

[FN ]rs =
1

√
N
e−2π(r−1)(s−1)i/N .

The superscript H indicates the adjoint matrix.
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Theorem 1. Let B be defined by (2). Assume the IAD method with the basic iter-

ation matrix T = αB + (1 − α)I, α ∈ (0, 1〉, and with µ steps of basic iterations in

each cycle. Let the aggregation groups be Gk = {2k − 1, 2k}, k = 1, . . . , n, n = N/2.
Then the spectrum of the error propagation matrix J(x) is

σ(J(x)) = {0, v0, v1, . . . , vn−1},

where

vk =
1

2

((

1− e2πki/N
) (

1− α+ αe−2πki/N
)µ

+
(

1 + e2πki/N
) (

1− α− αe−2πki/N
)µ)

.

(4)

Proof. The proof aims to compute the spectra of FH
N J(x)FN . We show only two

crucial points of the proof. The first one is the well known formula

B = FNDFH
N ,

where D is diagonal and [D]rr = e2π(r−1)i/N . The second one is that for the exact

solution x = e/N

P (x) =
1

2
RTR =

1

4
Fn

(

D̃1 0

0 D̃2

)(

I I
I I

)(

D̃H
1 0

0 D̃H
2

)

FH
n , (5)

where the matrices D̃1 and D̃2 are diagonal and [D̃1]rr = 1+e2π(r−1)i/N and [D̃2]rr =

1− e2π(r−1)i/N , r = 1, . . . , n. Find more about this technique in [2].

Though the spectrum of J(x) is computable for B defined by (2), it is not straight-

forward to simplify the term (4) for an arbitrary µ.

4. Optimal parameters µ and α

Under the assumptions of Theorem 1 let µ ∈ {1, 2, 3}. Let the spectra of the

corresponding matrices J(x) be σ1, σ2, σ3 and the spectral radii ρ1, ρ2, ρ3. Then

σ1 = {0, 1− 2α},

σ2 = {0} ∪
(

α2M + (1− α)(1− 3α)
)

,

σ3 = {0} ∪
(

(3α2 − 4α3)M + (1− α)2(1− 4α)
)

,

where M = {e−4πki/N}n−1
k=0.

For α ≈ 1 we have ρ3 < ρ1 < ρ2, see also Figure 1. Thus in case of B nearly of

the type (2) and of the aggregation groups with two elements strongly connected,

and for T = αB+(1−α)I, α ≈ 1, the most advantageous number of basic iterations

(among 1, 2, 3) in every IAD cycle is µ = 3.

Theorem 1 also allows to find the best parameter α if µ is given. Note that it

does not depend on N . For example, for µ = 1 the best is α = 1/2 which leads to

ρ1 = 0. For µ = 2 the best spectral radius is ρ2 = 1/9 for

α = arg min
α∈(0,1〉

max (|(1− α)(1− 3α) + α2|, |(1− α)(1− 3α)− α2|) = 1/3.
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Figure 1: Eigenvalues of J(x) for B defined by (2), x = e/N , N = 100, aggregation

groups Gk = {2k − 1, 2k}, k = 1, . . . , N/2, parameters α = 0.8 and µ ∈ {1, 2, 3, 4}.
The solid line is a reference unit cycle.

5. Discussion

We contribute to the theory of the IAD methods. Our results are applicable to

the theory of the AMG for nonsymmetric problems as well. The introduced approach

is based on the Fourier transform.

The introduced analysis can be generalized in several directions. More than

two elements in each aggregation group can be considered. Then instead of the

2× 2 block form in (5) we get an m×m block form if m elements are contained in

every aggregation group. Also block-circulant matrices can be studied [2].

We would like to emphasize that the local convergence of the IAD methods is not

necessarily obtained in general [8]. There are several examples where the spectral

radius of J(x) can be arbitrarily large [10]. It was shown that even B in the form (2)

can yield the spectral radius of J(x) arbitrarily close to two [9]. These examples

should be understood and avoided in the real life computation.

A promising utilization of our approach is in the theory of multi-level IAD meth-

ods. Presently we are not able to find any exact criteria for the local convergence of

the IAD methods with more than two levels. Our new approach could simplify the

involved formulae [11] and help us to find the optimal IAD parameters for at least

some special stochastic matrices.
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Abstract

In the contribution we present a problem of shape optimization of the cooling cavity

of a plunger that is used in the forming process in the glass industry. A rotationally

symmetric system of the mould, the glass piece, the plunger and the plunger cavity is

considered. The state problem is given as a stationary heat conduction process. The

system includes a heat source representing the glass piece that is cooled from inside

by water flowing through the plunger cavity and from outside by the environment

surrounding the mould. The design variable is the shape of the inner surface of the

plunger cavity.

The cost functional is defined as the squared L
2

r norm of the difference between

a prescribed constant and the temperature on the outward boundary of the plunger.

1. Introduction

This work deals with the optimal design of the shape of a plunger cavity that
controls the cooling of a glass piece during the manufacturing process. The aim of
the optimization is to find such a shape of the inner plunger cavity that allows for
cooling in such a way that a constant distribution of the temperature is achieved
across the surface of the moulding device at the moment of separation of the plunger
from the moulded piece.

2. Formulation of the problem

We rotate the system to the horizontal position to be able to describe the opti-
mized plunger cavity surface by a function of one variable.
We define

F e
2 (x) =

{

0 for x ∈ [0, xe2]
f e
2 (x) for x ∈ [xe2, 1]

, (1)

where xe2 ∈ [smin, 1] (smin > 0 is a fixed constant given by the minimal thickness
of the plunger wall), f e

2 ∈ C(0),1([xe2, 1]), f
e
2 (x

e
2) = 0 and 0 ≤ f e

2 (x) ≤ f1(x) − smin,
|f e

2
′(x)| < CD for x ∈]xe2, 1], where f1 is a fixed function. Further we assume that

a ≤ f e
2 (x)−s2 for x ∈ [xe3, 1], where a > 0 represents the radius of a supply tube and
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Figure 1: Scheme of the plunger with the optimized part of the boundary.

s2 > 0 is the minimal admissible split width between the inner wall of the plunger
cavity and the water supply tube, and xe3 ∈]x2, 1] is the deepness of the insertion of
the tube.

Further we define the set of admissible functions as

Ue
ad = { F e

2 (x) ∈ C(0),1([0, 1]) ; F e
2 (x) =

{

0 for x ∈ [0, xe2]
f e
2 (x) for x ∈ [xe2, 1]

,

xe2 ∈ [smin, 1], smin > 0, f e
2 ∈ C(0),1([xe2, 1]), f

e
2 (x

e
2) = 0,

0 ≤ f e
2 (x) ≤ f1(x)− smin, |f

e
2
′(x)| < CD for x ∈]xe2, 1],

f1 given, a ≤ f e
2 (x)− s2 for x ∈ [xe3, 1], a > 0, s2 > 0, xe3 ∈]x2, 1]} ,

where the function F e
2 describes the technological constraint for the inner cavity

surface.

We assume the region Ωe
P l that depends on the design function F e

2 (x), and that
is defined by the formula

Ωe
P l = {(x, r) ∈ R2 ; F e

2 (x) < r < f1(x), for x ∈ [0, 1]} .

Denote by Θ the set of all admissible regions Ωe
P l ⊂ R2, i.e., regions characterized

by F e
2 ∈ Ue

ad. Let us define the convergence on the set Θ. Since each Ωe
P l is uniquely

related to F e
2 , we can say that a sequence Ωn

P l ∈ Θ converges to a region Ωe
P l ∈ Θ

if and only if the sequence of functions F e
2

n (x) converges uniformly in [0, 1] to the
function F e

2 (x) that defines Ωe
P l.

Let us consider the union of four planar regions Ω = ΩMo ∪ΩGl ∪Ωe
P l ∪Ωe

Ca that
represents the planar cross section of the mould, the glass piece, the plunger and the
cooling channel of the plunger (see Figure 2).

Furthermore, we denote by Γ1 the boundary between the plunger Ωe
P l and the

moulded piece ΩGl and Γe
2 the boundary between the plunger Ωe

P l and the plunger
cavity Ωe

Ca. We denote by Γ3 the part of the boundary connecting the mould, the
moulded piece and the plunger with the presser, by Γ4 a part of the axis of symmetry
(see Figure 2), by Γ5 the part of the boundary formed by the tube. Γ6 is the notation
for the part of the boundary between the moulded piece ΩGl and the mould ΩMo
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Figure 2: Scheme of the mould, the glass piece, the plunger, the cavity of plunger
and the supply tube.

and Γ7 is the outward boundary of the mould, which is surrounded by an external
environment. Γin denotes the part of the boundary, where the cooling water comes
into the cooling channel of the plunger, and Γout stands for the part of the boundary,
where the water exits the channel.
In the three dimensional region Ge

Ca, which is created by the rotation of Ωe
Ca around

the x axis, we assume an incompressible potential water flow that is rotationally
symmetric with respect to the x axis. We split the boundary ∂Ge

Ca into the union of
four parts as

∂Ge
Ca = Γ3D

2 ∪ Γ3D
5 ∪ Γ3D

in ∪ Γ3D
out , (2)

where Γ3D
2 , Γ3D

5 , Γ3D
in , and Γ3D

out denote the respective parts of the boundary of ∂Ge
Ca

created by the rotation of Γe
2, Γ5, Γin, and Γout around the x axis.

The potential Φ describing the water flow is given as a solution of the Neumann
problem

∆Φ = 0 in Ge
Ca , (3)

∂Φ

∂n
= g on ∂Ge

Ca , (4)

where g ∈ L2(∂Ge
Ca), representing the normal component of the water flow velocity

at the entrance to and the exit from the plunger cavity, is in the form

g =











0 on Γ3D
2 ∪ Γ3D

5 ,
hinvelo on Γ3D

in ,
houtvelo on Γ3D

out ,
(5)

hinvelo is the normal velocity at the entrance Γ3D
in (hinvelo < 0) and houtvelo is the normal

velocity at the exit Γ3D
out. Further we assume

∫

Γ3D
in

∪Γ3D
out

g dS = 0 . (6)
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The variational formulation for the potential function has the form:
We look for the function Φ ∈ H1(Ge

Ca) such that

∫

Ge
Ca

(

∂Φ

∂x1

∂ϕ

∂x1
+
∂Φ

∂x2

∂ϕ

∂x2
+
∂Φ

∂x3

∂ϕ

∂x3

)

dV =

∫

Γ3D
in

∪Γ3D
out

gϕ dS ∀ϕ ∈ H1(Ge
Ca) . (7)

In the cavity Ge
Ca, the flowing water velocity field u = (u1, u2, u3) is given as

u = gradΦ . (8)

Theorem 1. (existence and uniqueness of the velocity field) Under the assump-
tion (6) there exists a unique velocity field of the form (8) satisfying

|||u|||L2(Ge
Ca

) ≤ c
(

‖hinvelo‖L2(Γ3D
in

) + ‖houtvelo‖L2(Γ3D
out)

)

, (9)

where
|||u|||L2(Ge

Ca
) =

∥

∥

∥

∥

√

u21 + u22 + u23

∥

∥

∥

∥

L2(Ge
Ca

)
. (10)

Proof. See [3].

Let us consider the union of four regions G = GMo ∪ GGl ∪ Ge
P l ∪ Ge

Ca that is
created by the rotation of the union Ω = ΩMo ∪ ΩGl ∪ Ωe

P l ∪ Ωe
Ca around the x axis.

We split ϑ, the searched function representing the distribution of the temperature,
into four functions

ϑ = ϑ0 + ϑ1 + ϑ2 + ϑ3 , (11)

where

ϑi =

{

ϑ|Gi
in Gi

0 in G \Gi
for i = 0, 1, 2, 3 , (12)

(G0 ≡ Ge
P l, G1 ≡ GGl, G2 ≡ Ge

Ca, G3 ≡ GMo).
Further we denote by ϑi|Γ3D

j
the trace of the solution ϑi on the boundary Γ3D

j if
Γ3D
j is a part of the boundary of Gi for i = 0, 1, 2, 3, j = 1, 2, 3, 4, 5, 6, 7, 8, 9

(Γ3D
8 = Γ3D

in , Γ
3D
9 = Γ3D

out).
By virtue of the rotational symmetry of both the state problem and the func-

tion ϑ, the state problem can be formulated variationally in two dimensions. We
define the operators

Energyvelo
Ω (ϑ, w, ψ) = cv̺2

∫

Ωe
Ca

(

∂ϑ2
∂x

w1 +
∂ϑ2
∂r

w2

)

ψr dΩ , (13)

Energycond
Ω (ϑ, ψ) = k0

∫

Ωe
P l

(

∂ϑ0
∂x

∂ψ

∂x
+
∂ϑ0
∂r

∂ψ

∂r

)

r dΩ+ (14)

+ k1

∫

ΩGl

(

∂ϑ1
∂x

∂ψ

∂x
+
∂ϑ1
∂r

∂ψ

∂r

)

r dΩ +
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+ k2

∫

Ωe
Ca

(

∂ϑ2
∂x

∂ψ

∂x
+
∂ϑ2
∂r

∂ψ

∂r

)

r dΩ +

+ k3

∫

ΩMo

(

∂ϑ3
∂x

∂ψ

∂x
+
∂ϑ3
∂r

∂ψ

∂r

)

r dΩ ,

EnvironmentΩ(ϑ, ψ) =
∫

Γ7

αϑ3|Γ7
ψr dΓ , (15)

SourceΩ(ψ) = ̺1

∫

ΩGl

qψr dΩ , (16)

CoeffΩ(ψ) =
∫

Γ1

β1ψr dΓ +

∫

Γ6

β6ψr dΓ +

∫

Γ7

αϑ4ψr dΓ , (17)

where cv is the specific heat capacity per unit volume, ̺1 is the density of glass,
̺2 is the density of water, w1, w2 are the water velocity field components expressed
in cylindrical coordinates, k0, k1, k2, k3 are the coefficients of thermal conductivity,
α is the coefficient of heat-transfer between the mould and the environment, ϑ4 is
the temperature of the environment, β1, β6 are the average power conversion of the
unit volume of the glass body (see [4, page 128]) and q is the density of heat sources.
Further we denote by

AΩ(ϑ, w, ψ) = Energyvelo
Ω (ϑ, w, ψ) + Energycond

Ω (ϑ, ψ) + (18)
+ EnvironmentΩ(ϑ, ψ)

and

FΩ(ψ) = SourceΩ(ψ) + CoeffΩ(ψ) . (19)

We introduce the weighted Sobolev space H1
r (Ωi) (see [2]) provided with the norm

‖v‖1,r,Ωi
=





∫

Ωi





(

∂v

∂x

)2

+

(

∂v

∂r

)2

+ v2



 r dΩ





1

2

i = 0, 1, 2, 3 , (20)

(Ω0 ≡ Ωe
P l, Ω1 ≡ ΩGl, Ω2 ≡ Ωe

Ca, Ω3 ≡ ΩMo).
Further we introduce

H(Ω) = { ϑ; ϑ defined in (12), ϑi ∈ H1
r (Ωi) for any i = 0, 1, 2, 3,

ϑ3|Γ6
= ϑ1|Γ6

, ϑ1|Γ1
= ϑ0|Γ1

, ϑ0|Γe
2
= ϑ2|Γe

2
} ,

where ϑi|Γj
denotes the trace of the function ϑi on the boundary Γj.

We define the norm in H(Ω) as

‖ϑ‖
H

=
(

‖ϑ0‖
2
1,r,Ω0

+ ‖ϑ1‖
2
1,r,Ω1

+ ‖ϑ2‖
2
1,r,Ω2

+ ‖ϑ3‖
2
1,r,Ω3

)
1

2 . (21)

Theorem 2. The set H(Ω) with the norm (21) is a Hilbert space.
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We denote by H
∗(Ω) the dual space to the space H(Ω) with the norm

‖ψ‖
H

∗ = sup
ϕ 6=0

AΩ(ϕ, w, ψ)

‖ϕ‖
H

.

We define the sets
ΩH = Ω ∪ Γ3 ∪ Γin ∪ Γout

and
He 2D = {v ∈ C∞(ΩH); v|Γ3∪Γin∪Γout

= 0 } .

Let H0(Ω) be the closure of the set He 2D in H(Ω).

We assume the existence of a function ϑeΓ ∈ H(Ω) such that

ϑeΓ|Γin
= 288 on Γin, (22)

ϑeΓ|Γout
= heout on Γout, (23)

ϑeΓ|Γ3
= h3 on Γ3, (24)

where h3 ∈ C(Γ3) is a given function representing the steady temperature on the
boundary Γ3 (see Figure 2) and heout ∈ C(Γout) is a given function representing the
temperature distribution on the cavity output Γout.
We use the variational formulation of the energy equation to formulate

The State Problem:

We look for the function ϑ ≡ ϑ(F e
2 ) ∈ H(Ω) such that

AΩ(ϑ, w
e, ψ) = FΩ(ψ) ∀ψ ∈ H0(Ω) , (25)
ϑ− ϑeΓ ∈ H0(Ω) , (26)

where F e
2 ∈ Ue

ad and w
e is the corresponding flow pattern given as the gradient of

the solution to (7).
Remark. The state problem is solved in two steps. First, the potential Φ of the
water velocity is found as a solution of the problem (7) in the region Ge

Ca. The
components of the velocity field u are computed from (8), transformed to cylindrical
coordinates and substituted into (13). Then the distribution of the temperature ϑ
in the whole system Ω is found as the solution of the state problem (25), (26).

Theorem 3. (the existence and uniqueness of the solution of the state problem)
The state problem (25), (26) has a unique solution ϑ(F e

2 ) for each F e
2 ∈ Ue

ad and
the associated flow pattern w

e obtained as the gradient of the unique solution of (7),
moreover, there exists a constant C > 0 such that

‖ϑ(F e
2 )‖H ≤ C‖FΩ‖H∗ . (27)

Proof. It is sufficient to verify the assumptions of the Lax-Milgram Theorem (see [3]).
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We formulate the problem of the optimal design for the plunger cavity shape:

We define the cost functional as

J S(F e
2 ) = ‖ϑ(F e

2 )|Γ1
−TΓ1

‖20,r,Γ1
, (28)

where ϑ(F e
2 )|Γ1

is the Γ1-trace of the solution ϑ(F e
2 ) of the state problem (25), (26)

in the region Ωe
P l, where TΓ1

is a given constant representing the known optimal
temperature of the plunger surface. We look for the optimal design FOpt ∈ Ue

ad

such that
J S(FOpt) ≤ J S(F e

2 ) ∀ F e
2 ∈ Ue

ad . (29)

Theorem 4. The optimal design problem (29) has at least one solution.

Proof. We refer to Theorem 2.1 [1, page 29], see [3].

Remark. A sensitivity analysis can be performed on the basis of temperature
evaluation along the boundary Γ1. Let us introduce a homeomorphism between the
outward plunger boundary Γ1 and the plunger cavity boundary Γe

2 defined by the
gradient lines of the temperature field in the plunger. In the parts of Γ1 where we
need to decrease the temperature, we narrow “the wall” by moving the points of Γe

2

along the gradient lines to locally achieve more intensive cooling. On the other hand,
in places of Γ1 where we need higher temperature, we increase “the wall thickness”
to locally decrease the intensity of cooling. By the term “the wall thickness” we
understand the length of the temperature gradient line that connects the related
points of Γ1 and Γe

2.
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Abstract

In the paper, we are concerned with some computational aspects of smooth

approximation of data. This approach to approximation employs a (possibly infinite)

linear combinations of smooth functions with coefficients obtained as the solution of

a variational problem, where constraints represent the conditions of interpolating or

smoothing. Some 1D numerical examples are presented.

1. Introduction

Smooth approximation [2] is an approach to data interpolation that employs the

variational formulation of the problem in an inner product space, where constraints

represent the interpolation conditions. A possible criterion is to minimize the inte-

gral of the squared magnitude of the interpolating function. A more sophisticated

criterion is then to minimize, with some weights chosen, the integrals of the squared

magnitude of some (or possibly all) derivatives of the interpolating function. We are

thus concerned with the exact interpolation of the data at nodes and, at the same

time, with the smoothness of the interpolating curve and its derivatives.

Smooth approximation has numerous applications as measurements of the values

of a continuous function of one, two, or three independent variables are carried out

in many branches of science and technology. We always get a finite number of

function values measured at a finite number of points but we are interested also in

intermediate values corresponding to other points. Apparently, except for the fixed

constraints to be satisfied, the formulation of the problem of smooth approximation

can vary and give the resulting interpolant of different smoothness. The cubic spline

interpolation is known to be the approximation of this kind.

We confine ourselves to the case of 1D independent variable. We introduce the

proper inner product space in Section 2. We formulate the problem and present the

existence and uniqueness theorem in Section 3. In the next section, we show results

of numerical experiments comparing the classical interpolation formulae and various

basis systems for the smooth approximation. We finally sum up the results presented

that show some properties of smooth approximation.

A paper containing all proofs has been prepared for a numerical analysis journal.
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2. Notation

Let us consider the linear vector space ˜W of complex functions g continuous

together with their derivatives of all orders on the interval (a, b), which may be

infinite. Let {Bl}
∞

l=0 be a sequence of nonnegative numbers and let there be the

smallest nonnegative integer L such that BL > 0 while Bl = 0 for all l < L. For

g, h ∈ ˜W we construct the expression

(g, h)L =

∞

∑

l=L

Bl

∫ b

a

g(l)(x)[h(l)(x)]∗ dx, (1)

where ∗ denotes complex conjugation. Let us further put

|g|2L =

∞

∑

l=L

Bl

∫ b

a

|g(l)(x)|2 dx. (2)

If B0 > 0 (i.e. L = 0) the expression |g|0 = ‖g‖ is the norm and (g, h)0 = (g, h) the
inner product, and the set of all such functions forms a Hilbert spaceW corresponding

to the sequence {Bl}.
If L > 0 then |g|L is a seminorm on W . We construct the quotient space W/PL−1

where the subspace PL−1 ⊂ W is the space of polynomials of degree at most L− 1.

Then |g|L is the norm and (g, h)L the inner product on the quotient space W/PL−1 of

equivalence classes. The choice of the sequence {Bl} defines weights of the individual

derivatives in the expression (2) and guarantees the convergence of the series (2) as

well.

Let us introduce some more notation to be able to formulate the problem of

smooth approximation. Let us choose a system of functions {gk} ⊂ W , k = 1, 2, . . . ,
that is complete and orthogonal (with respect to the inner product (1)), i.e.,

(gk, gm)L = 0 for k 6= m, (gk, gk)L = |gk|
2
L > 0.

3. Problem of smooth interpolation

Let us have N (complex, in general) measured (sampled) function values f1, f2,
. . . , fN ∈ C measured at N mutually distinct nodes X1, X2, . . . , XN ∈ Rn. We are

interested also in the intermediate values corresponding to other points. Assume

that these fj = f(Xj) are measured values of some continuous function f while z is

an approximating function to be constructed. We put n = 1 in what follows.

If L > 0 we construct the set {ϕp}, p = 1, . . . , L, of mutually orthogonal complex

functions from W such that

(ϕp, ϕq)L = 0 for p, q = 1, . . . , L. (3)

This implies |ϕp|L = 0. Moreover, assume

(ϕp, gk)L = 0 for p = 1, . . . , L, k = 1, 2, . . . . (4)
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The natural choice is ϕp(x) = xp−1, p = 1, . . . , L. The relations (3) and (4) are

then satisfied. The set {ϕp} is empty for L = 0.

Put

z(x) =

∞

∑

k=1

Akgk(x) + t(x), t(x) =

L
∑

p=1

apϕp(x). (5)

Problem of smooth interpolation. Let us fix nonnegative integers L and N of

the above properties. The problem of smooth interpolation of a continuous func-

tion f given by its N values fj = f(Xj) is to find the coefficients ap and Ak of the

expressions (5) such that

z(Xj) = fj , j = 1, . . . , N, (6)

and

the quantity |z|2L attains its minimum. (7)

The smooth interpolation problem thus consists of the variational problem (7),

i.e. minimizing the functional |z|2L, with constraints (6).

Note that when minimizing ‖z‖2, we minimize not only the L2(a, b) norm of z
but also (with a weight B1 chosen) the L

2(a, b) norm of z′, i.e. of the first derivative
of z. This can be of importance in processing of such measured data where also

a good approximation of the first derivative is needed.

Put

RL(x, y) =

∞

∑

k=1

gk(x)g
∗

k(y)

|gk|2L
. (8)

If L > 0, introduce the rectangular N × L matrix Φ with entries Φjp = ϕp(Xj),

j = 1, . . . , N , p = 1, . . . , L. Now we can formulate the following theorem.

Theorem 1. Let Xi 6= Xj for all i 6= j. Assume that the series (8) converges for

all x, y ∈ (a, b). Moreover, let rank Φ = L. Then the problem (5), (6), and (7) of

smooth interpolation has the unique solution

z(x) =

N
∑

j=1

λjRL(x,Xj) +

L
∑

p=1

apϕp(x),

where the coefficients λj, j = 1, . . . , N , and ap, p = 1, . . . , L, are the unique solution

of the linear algebraic system

N
∑

j=1

λjRL(Xi, Xj) +

L
∑

p=1

apϕp(Xi) = fi, i = 1, . . . , N,

N
∑

j=1

λjϕ
∗

p(Xj) = 0, p = 1, . . . , L.

Proof. The proof is based on the method of Lagrange multipliers for constrained

minimization.
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4. Numerical examples

We have used three systems {gk} defined in different spaces W with different

sequences {Bl}, cf. [1], [2]. It is Bl = (1
3
)2l/(2l)!, l = 0, 1, . . . , for I and II.

I dashed line The system of transformed complex exponential functions exp(ikx),
L = 0, and the function R0(x, y) analytically known.

II dotted line The system of monomials xk orthonormalized numerically on (−1, 1)
by the Gram-Schmidt procedure. The function R0(x, y) computed in double precision

by summation until the module of the increment is less than 10−12 but at most

40 terms are considered.

III dashed line The same transformed complex exponential functions like in I. Bl = 0

for all l except for B2 = 1, i.e. the L2 norm of z′′ is minimized. R2(x, y) = |y − x|3,
t(x) = a0 + a1x. This is the well-known cubic spline interpolation.

Moreover, we computed the results of

IV dotted line Polynomial interpolation.

V dash-dot line Rational interpolation.

Solid line shows the true solution, i.e. the function f given. We tried two of them,

the smooth even function

f(x) =
1

1 + 16x2
(9)

with its maximum at x = 0 and the function

f(x) = 3(x+ 1)2 + ln(( 1
10
x)2 + 10−5) + 1 (10)

with “almost a singularity” at x = 0. The grid is equidistant. Very “wavy” inter-

polants obtained are not shown.

Numerical experiments performed to present the properties of smooth interpola-

tion show that it is an efficient method.

We were concerned only with the problem of smooth exact interpolation of func-

tion values at nodes which is controlled by the constraints (6) and, in addition, by

the minimum condition (7). Moreover, the smooth approximation approach can be

employed also in the exact Hermite interpolation and in the smoothing of data. The

2D case is much more interesting and makes many important applications possible.
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Figure 1: Interpolants of the function (9), N = 5. Curves at x = 0.2 from top to

bottom: IV, III, I identical to II, true identical to V.
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Figure 2: Interpolants of the function (10), N = 5. Curves at x = −0.8 from top to

bottom: IV, II, III, I, true. V not shown.
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Figure 3: Interpolants of the function (10), N = 9. Curves at x = 0.9 from top to

bottom: IV, I, II identical to III and to true. At x = −0.1, the first two from top:

true, V. Notice different y scale.
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Figure 4: Interpolants of the function (10), N = 17. IV not shown, the rest almost

identical.
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Abstract

The hot-wire method, based on the recording of the temperature development

in time in a testing sample, supplied by a probe with its own thermal source, is

useful to evaluate the thermal conductivity of materials under extremal loads, in

particular in refractory brickworks. The formulae in the technical standards come from

the analytical solution of the non-stationary equation of heat conduction in cylindric

(finally only polar) coordinates for a simplified formulation of boundary conditions,

neglecting everything except the first terms of the decomposition of related exponential

integrals to infinite series, and least-squares based data fitting; such approach reduces

the validity of results and obstructs the simultaneous evaluation of heat capacity.

This paper demonstrates that substantial improvements can be obtained without

any requirements to additional measurements, both i) under the assumption of a wire

of zero-thickness and an infinite sample (following the valid Czech technical standard)

with proper exponential integrals and ii) for a more realistic geometrical configuration

and physical simplification (taking into account the thermal characteristics of the

wire), based on the properties of Bessel functions. The suggested algorithms have

been implemented in the MATLAB environment.

1. Introduction

Reliable evaluation of thermal characteristics of materials used in mechanical,

civil, etc. engineering, including their dependence on temperature, moisture, strain

and other fields, even for advanced materials, structures and technologies where no

reasonable values from practical experience are available, determines the range of

applications of computational modelling of all multi-physical processes. In particu-

lar, identification of thermal properties of refractory brickworks (discussed later in

more details), of hardening cement pastes and concrete structures [14], as well as of

foods stored in freezing and cooling plants [9], requires some simple methodology,

applicable under hard conditions, with negligible disturbing effect of other physical

processes.

For simplicity, let us restrict to the identification of two basic characteristics of

heat conduction in engineering materials: the thermal conductivity λ [W/(m·K)]
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(as a crucial thermal insulation characteristic) and the volumetric heat capacity κ
[J/(m2·K)] (important for thermal accumulation); the thermal diffusivity α [m2/s]

can be then introduced as α := λ/κ. For the evaluation of λ, European techni-

cal standards offer the i) hot-plate, ii) hot-wire and iii) hot-ball approaches. The

physical background of all these approaches is very similar: temperature (or temper-

ature difference) is recorded in some (sufficiently small) range, whose development is

forced by the carefully controlled generation of heat fluxes, during a (rather short)

time interval. The principal difference consists in the geometrical configuration: in

the case i) we have one or more parallel heating (or also additional non-heating) thin

plates [11], in the case ii) a thin heating wire (see [1] and the following section) and

in the case iii) a small heating ball (see [8]); the heat fluxes generated into the mea-

surement system is controlled by direct voltage in all cases. The arrangement should

be as simple as possible, with the aim to reduce the dimensions of corresponding

heat transfer problems as much as possible; consequently (most frequently) working

i) with Cartesian coordinates, ii) with cylindrical and iii) with spherical ones.

Our more detailed analysis will be devoted to the case ii). The relevant Euro-

pean standard [4] contains a (seemingly strange) explicit logarithmic formula for the

evaluation of λ, supplied (for uncertain measurements) by the least-square (linear

regression) approach to data fitting. However, as shown in [1], this formula can be

identified with the fundamental solution of a heat conduction equation, satisfying

the realistic boundary conditions in certain limit sense, well-known from [2], where

in the additive decomposition of an exponential all terms except the first two are

removed; this can be justified by the location of temperature sensors close to the

heating wire. Such approach enables us to calculate (approximately) λ without the

a priori knowledge of α; unfortunately, no information referring to κ is then available

(because it was hidden in the removed terms containing α). We shall demonstrate

that the proper analysis of the above sketched problems offers a possibility to identify

both λ and κ from the same data set. Moreover, we shall show how some unpleasant

physical and geometrical assumptions can be modified to be more realistic, using the

properties of Bessel functions by [3] instead of the classical analytical results from [2].

2. Improved computations with exponential integrals

Following [4], let us assume that some constant heat Q [W/m], starting from the

zero initial time, is generated per unit length of a very long and thin wire, located

in the axis of the circular cylinder with a very large radius, occupied by the material

specimen. Let T (r, t) be the temperature field defined for any positive radius r
(distance from the axis of rotation) and any positive time t (in practice for some

measurement time interval) and T0 the constant temperature of the surrounding

environment. Then, by [1] (referring to [2]), using the notation β0 := Q/(4πλ),
β := 1/(4α), we have

T = β0 Ei (βr
2/t) + T0 with Ei (.) :=

∫

∞

.

exp(−u)

u
du . (1)
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Indeed, using dot symbols for partial derivatives with respect to t and prime symbols

for those with respect to r, it is easy to verify that T from (1) satisfies the classical

Fourier equation of heat conduction (without internal heat sources) with constant

characteristics λ and κ in polar coordinates

κṪ +
λ

r
(rT ′)′ = 0 (2)

together with the obvious initial condition T (., 0) = T0 and the with the couple of

boundary conditions

lim
r→∞

T (r, .) = 0 , lim
r→0+

−λT ′(r, .)

Q/(2πr)
= 1 (3)

where the first limit guarantees the absence of heat fluxes from external environment

and both the numerator and the denominator in the second limit represent the heat

flux [W/m2] on the surface of cylinder with a fixed small radius (this is just the

announced way how to avoid the realistic finite radius and material characteristics

of a wire). Clearly the data for t = 0 (and also t → 0 in practice), thanks to the

discontinuity of heat generated into the system (forcing the application of Dirac

measures and Heaviside functions in [2]), are then not employable in any credible

identification procedure for λ and κ, in particular for λ and α from (1); for the special

case of the simplified evaluation of λ this observation is reflected by [4], too.

Let us assume that all sensors recording the temperature are located at r = δ
where distance δ must be very small positive number by [4] (the measurement could

be performed as close as possible to the wire surface), but is allowed to be finite

in our considerations. Let m be a number of measurement time steps; the initial

time t = 0 is not included. Using the notation t1, . . . , tm (0 < t1 < . . . < tm) for

discrete measurement times and Ts for corresponding temperature values at r = δ.
All differences Ts − Ts−1 with s ∈ {2, . . . , m} should correspond to the experimental

temperature differences τs; for simplicity, only one recorded temperature value is

considered in every discrete time; the generalization over all available data is obvious.

Thus, using the notation β1 := βδ2, we have to minimize a function

Φ = (1/2)
m
∑

s=2

(τs − (Ts − Ts−1))
2 (4)

of two positive variables β0 and β1 (transformed from λ and α easily) where, for

simplicity, only one recorded temperature value is considered in every discrete time;

the generalization over all available data is obvious.

Let Φ,i and Φ,ij denote the derivatives ∂Φ/∂βi and ∂
2Φ/∂βi∂βj with i, j ∈ {0, 1}.

For β1s := Ei (β1/ts), ˜β1s = exp(−β1/ts)− exp(−β1/ts−1) and εs := β0β1s − τs with

s ∈ {2, . . . , m} we receive explicit formulae (the MAPLE support is welcome)

Φ = (1/2)
m
∑

s=2

ε2s , Φ,0 =
m
∑

s=2

εsβ1s , Φ,1 = −(β0/β1)
m
∑

s=2

εs ˜β1s ,
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Φ,00 =
m
∑

s=2

β2
1s , Φ,01 = −(1/β1)

m
∑

s=2

(2β0β1s − τs) ˜β1s , Φ,11 = (β0/β1)
2

m
∑

s=2

˜β2
1s

+(β0/β1)
m
∑

s=2

εs (Ei (β1/ts)/ts − Ei (β1/ts−1)/ts−1) + (β0/β
2
1)

m
∑

s=2

εs ˜β1s .

Clearly we need Φ,0 = Φ,1 = 0. Taking (for sufficiently small δ) β1 ≈ 0 together with

Ei (.) ≈ −Ce − ln(.) (the Euler-Mascheroni constant Ce is not needed in numerical

calculations), for γs := ln(ts/ts−1) with s ∈ {2, . . . , m} we receive the very simple

formula

β0 ≈
m
∑

s=2

γsτs/
m
∑

s=2

γ2s , (5)

which is identical with that for the identification of λ from [4]. More generally, we

are allowed to choose β0 from (5) as the first estimate together with

β1 ≈
m
∑

s=2

(1/ts − 1/ts−1)(τs/β0 − γs)/
m
∑

s=2

(1/ts − 1/ts−1)
2

and apply the Newton iteration algorithm

[

β0
β1

]

←

[

β0
β1

]

−

[

Φ,00 Φ,01

Φ,01 Φ,11

]

−1 [

Φ,0

Φ,1

]

;

this enables us to determine (more exactly) both β0 and β1, consequently also λ and κ
(even without evaluations of inverse matrices in the computational practice).

3. A generalized approach applying Bessel functions

The generalization of the above sketched approach, removing mathematical and

physical simplifications, can be done in more directions. However, being motivated

from the results of MATLAB supported practical calculations with data coming from

experiments with fire-clay bricks at high temperatures, we shall try to replace rather

artificial boundary conditions (3) by more realistic ones. Let a be the outer radius of

a specimen and δ < a a wire radius. Following [5], let us introduce the brief notation

for scalar products in the special Lebesgue weighted spaces

(φ, ˜φ)r =
∫ a

0
φ(.)r ˜φ(.) dr for all φ, ˜φ ∈ L2

r(0, a) ,

(φ, ˜φ)r0 =
∫ δ

0
φ(.)r ˜φ(.) dr for all φ, ˜φ ∈ L2

r(0, δ) ,

(φ, ˜φ)r1 =
∫ a

δ
φ(.)r ˜φ(.) dr for all φ, ˜φ ∈ L2

r(δ, a) .

Material characteristics λ, κ, α will be taken as simple functions of r, with values

equal to a priori known constants λ0, κ0, α0 for 0 ≤ r ≤ δ and unknown ones λ1, κ1, α1

for δ ≤ r ≤ a (although their rather good estimates may be available by the previous

section); moreover we shall need λ
∗
:= λ1/λ0, κ∗ := κ1/κ0 and α

∗
:= α1/α0.
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Let V be the space of admissible test functions, i. e., applying the notation of

special Sobolev weighted spaces from [5] again, the space of all v ∈ W 1,2
r (0, a) such

that v(r) = v0(r) for 0 ≤ r ≤ δ and some v0 ∈ W
1,2
r (0, δ), as well as v(r) = v1(r)

for δ ≤ r ≤ a and some v1 ∈ W 1,2
r (δ, a) satisfying v1(a) = 0. Let H be the space

introduced in the same way as V except L2
r inserted instead of W 1,2

r everywhere.

Using such notation, we are able to convert (2) into the form

(v, κṪ )r = (v, λ(rT ′)′/r)r + (v, g)r (6)

where g := Q/(πδ2) for 0 ≤ r ≤ δ (any better information on the distribution of g
in a wire is usually missing), zero otherwise. For positive times t we have to find

T (., t)− T0 from V with Ṫ (., t) from H.
Let us consider the decomposition T (r, t) = Tσ(r) + θ(r, t) where

T (r, t) = Tσ(r) + θ(r, t) with θ(r, t) =
∞

∑

i=1

ϕi(r)ψi(t) ; (7)

the corresponding initial conditions are T (., 0) = T0 and θ(., 0) = T0 − Tσ(.) and the

boundary (including the internal interface) ones are

T ′(0, .) = 0 , λ0T
′(δ

−
, .) = λ1T

′(δ+, .) , T (a, .) = 0 ,
θ′(0, .) = 0 , λ0θ

′(δ
−
, 0) = λ1θ

′(δ+, 0) , θ(a, .) = 0 ,
λ0T

′

σ(δ−) = λ1T
′

σ(δ+) , Tσ(a) = T0 .
(8)

(δ+ and δ
−
refer to left and right limits for r tending to δ). Here Tσ can be derived

as an analytical solution for the stationary case (with zero κ formally)

Tσ(r) =

{

Q/(2πλ1) ln(a/δ) +Q/(4πλ0)(1− (r/δ)2) for 0 ≤ r ≤ δ ,
Q/(2πλ1) ln(a/r) for δ ≤ r ≤ a .

(9)

Utilizing the properties of Bessel functions

Jn(r) =
1

π

∫ π

0
cos(r sin ξ − nξ) dξ with n ∈ {0, 1, 2, . . .} ,

namely J ′

0(r) = −J1(r), J
′

1(r) = J0(r)− J1(r)/r, etc., by [3], we can see that

r−1(rJ ′

0(ωr))
′ + ω2J0(ωr) = 0 (10)

for any real ω, it is natural to find the zero points of Bessel functions, i. e. to solve

J0(ωia/
√
α
∗
) = 0 for unknown parameters ωi with i ∈ {1, 2, . . .}, and to choose

ϕi(r) =

{

βiJ0(γiωir) for 0 < r < δ ,
J0(ωir/

√
α
∗
) for δ < r < a ,

(11)

to satisfy boundary conditions ϕ′

i(0) = 0, ϕi(a) = 0 automatically and

ϕi(δ−) = ϕi(δ+) , λ(δ
−
)ϕ′

i(δ−) = λ(δ+)ϕ
′

i(δ+) (12)
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for a priori unknown values of βi and γi, coming from the auxiliary systems of two

nonlinear equations

βiJ0(γiωiδ) = J0(ωiδ/
√
α
∗
) , βiγiJ1(γiωiδ) = (λ

∗
/
√
α
∗
)J1(ωiδ/

√
α
∗
) . (13)

It is easy to see that βi can be evaluated from (13) as a function of γi directly.

Consequently (13) degenerates to just one nonlinear equation for the evaluation

of γi; all technical details for the Newton iterative algorithm can be found in [13].

Inserting (11) and (7) into (6), for any v ∈ V we receive

[(v, ϕi)r0 + κ
∗
(v, ϕi)r1]ψ̇i − α0[(v, (rϕ

′

i)
′/r)r0 + λ

∗
(v, (rϕ′

i)
′/r)r1]ψi = 0 . (14)

Taking (10) into account, (14) gets tho form

[(v, ϕi)r0 + κ
∗
(v, ϕi)r1]ψ̇i + α0ω

2
i [γ

2
i (v, ϕi)r0 + κ

∗
(v, ϕi)r1]ψi = 0 . (15)

Simultaneously, applying the Green-Ostrogradskǐı theorem, (14) yields

[(v, ϕi)r0 + κ
∗
(v, rϕi)r1]ψ̇i + α0[(v

′, ϕ′

i)r0 + λ
∗
(v′, ϕ′

i)r1]ψi

= α0[(v(δ−)ϕ
′

i(δ−)− λ∗v(δ+)ϕ
′

i(δ+)] .
(16)

In particular for v = ϕj with arbitrary j ∈ {1, 2, . . .}, comparing (15) and (16), we

have

(ϕ′

j , ϕ
′

i)r0 + λ
∗
(ϕ′

j, ϕ
′

i)r1 = ω2
i [γ

2
i (ϕj, ϕi)r0 + κ

∗
(ϕj, ϕi)r1] .

The mutual exchange of indices i and j then results certain quasi-orthogonality

condition

(ω2
i − ω

2
j )κ∗(ϕi, ϕj)r0 + (ω2

i γ
2
i − ω

2
jγ

2
j )(ϕi, ϕj)r1 = 0 ;

in practice γ2i ≈ γ2j ≈ κ
∗
can be considered.

To find all ψi contained in (7), we must solve an eigenproblem Mjiψ̇i+Kjiψi = 0

for Mji := (ϕj, ϕi)r0 + κ(ϕj, ϕi)r1, Kji := α0ω
2
i [(ϕj , ϕi)r0 + κ(ϕj, ϕi)r1)] and for

the decomposition ψi = Vip exp(−Λpt)Cp, using the Einstein summation rule for all

indices i, j, p ∈ {1, 2, . . .}; Λp here are eigenvalues, Vi1, Vi2, . . . eigenvectors (in the

matrix form we could write MV Λ = KV only) and Cp unknown parameters, needed

to be set due to our initial condition. The resulting formulae (assuming i 6= j)
for effective numerical evaluation (obtained with the support of MAPLE) for the

effective evaluation of Dji, Mji and Kji, separately for diagonal and non-diagonal

terms, can be found in [13]. The evaluation of constants Cp then comes from the

equation

(v, T0 − Tσ)r0 + κ
∗
(v, T0 − Tσ)r1 = [(v, ϕi)r0 + κ

∗
(v, ϕi)r1]VipCp ,

i. e. F =MV C, consequently C = (MV )−1F , where most parts of integrals Fj with

j ∈ {1, 2, . . .}, coming from (9), as presented in all details in [13], can be evaluated

analytically, thanks to the properties of Bessel functions J0 J1, J2 and J3.
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Our final aim is, exploiting the same data as in the preceding section, to minimize

a function Φ from (4) of two positive variables λ
∗
and κ

∗
(transformed from λ1

and α1). Clearly a (sufficiently large) finite number of Bessel functions is considered

in (7) in numerical calculations, thus all matrices M and K, vectors F , etc. are

finite. However, it is not so easy to perform the minimization procedure because

no simple explicit formulae employable in the Newton iterations are available, thus

numerical evaluations of approximate first and second derivatives of Φ are necessary.

Fortunately, this can be done e. g. with the support of selected functions from the

MATLAB optimization toolbox.

4. Applications, conclusions and generalizations

In addition to the i) simplified approach recommended by [4], both algorithms

presented in ii) Section 2 and iii) Section 3 of this paper have been implemented

in MATLAB environment as the support of measurement tools in the Laboratory

of Building Physics at Brno University of Technology. The limited extent of this

paper does not allow to present results of practical calculations; the reader can

find corresponding figures and graphs, together with more detailed description (and

photo) of the original hot-wire measurement equipment in [10], devoted to the ma-

terial design for the high-temperature thermal accumulator, as one part of the large

Swedish-Czech research project of the efficient exploitation of solar energy using

optical fibers.

Up to now, the computational results under hard conditions (far from room tem-

peratures) demonstrate that i) gives only the rough estimate of λ, but no reasonable

value of κ at all, whereas ii) is able to improve this estimate substantially. The sys-

tem error of ii), coming from the neglected size and heat capacity of a hot wire, can

be removed by iii) effectively, but making use of much more numerical computations.

Nevertheless, other disturbing effects, coming from thermal convection and radiation,

namely from the heat transfer at the wire / specimen interface, as well as those con-

nected with the more complicated real geometrical conditions, cannot be handled in

this way. More general formulations of heat transfer (together with other physical,

chemical, etc. processes) need extensive applications of finite element, volume or

difference methods, accompanied by the proper uncertainty analysis, as that based

on Sobol sensitivity indices and Monte Carlo stochastic simulations like [7], or that

substituting the Lebesgue measure by some probabilistic one, directed to stochastic

finite element, etc. approaches, like [15]. Consequently Φ the optimization problem

of the type (4) is not a function of two (or finite, for the best low) number of positive

parameters, but a rather general functional in some space of abstract functions; some

results and open questions of such analysis, containing direct, sensitivity and adjoint

problems, have been presented in [12].
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Institute of Mathematics AS CR, Prague 2013

GUARANTEED AND FULLY COMPUTABLE TWO-SIDED

BOUNDS OF FRIEDRICHS’ CONSTANT
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Abstract

This contribution presents a general numerical method for computing lower and

upper bound of the optimal constant in Friedrichs’ inequality. The standard Rayleigh-

Ritz method is used for the lower bound and the method of a priori-a posteriori

inequalities is employed for the upper bound. Several numerical experiments show

applicability and accuracy of this approach.

1. Introduction

From the numerical point of view, the guaranteed and fully computable two-

sided bounds always provide a strong information about the computed quantity.

Their difference is a reliable bound on the approximation error and in applications

they allow to stay on the safe side by using properly either the lower or the upper

bound as the approximation.

In this contribution, we concentrate on the optimal constant in Friedrichs’ in-

equality. The presented two-sided bounds are guaranteed up to round-off errors.

The chosen approach is quite general and theoretically it can be used in arbitrary

dimension, for any domain, and for different variants of Friedrichs’ inequality. Practi-

cally, we are limited by particular choices of discretization methods. For instance, the

presented numerical examples are limited to polygonal domains in two dimensions.

The optimal constant in Friedrichs’ inequality is called Friedrichs’ constant and

its value is connected with the smallest eigenvalue of the corresponding differential

operator. The classical Rayleigh-Ritz method provides an upper bound on the exact

eigenvalue and consequently a lower bound for Friedrichs’ constant.

Computing a lower bound of the smallest eigenvalue and hence computing the

upper bound of Friedrichs’ constant is considerably more difficult task. We use

the method of a priori-a posteriori inequalities [5, 9]. The original idea relies on

C2-smooth test and trial functions, which are technically difficult to work with.

Therefore, we proposed in [11] an alternative approach based on complementarity

and standard Raviart-Thomas finite element method.

We briefly review this approach in Sections 2–4 and provide several numerical

experiments in Sections 5–7.
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2. Friedrichs’ inequality

Let us consider a domain Ω ⊂ R
d with Lipschitz boundary. Further, let ΓD and ΓN

be two relatively open and disjoint subsets of the boundary ∂Ω such that ∂Ω =

ΓD ∪ ΓN. Let the (d − 1)-dimensional measure of ΓD be positive. We will refer ΓD

and ΓN to as Dirichlet and Neumann parts of the boundary, respectively. Further,

we consider Sobolev space H1(Ω) = {v ∈ L2(Ω) : ∇v ∈ [L2(Ω)]d} and its subspace

V = {v ∈ H1(Ω) : v|ΓD
= 0} of functions with vanishing traces on ΓD.

In this contribution, we will assume the following variant of Friedrichs’ inequality:

‖v‖0,Ω ≤ CF‖∇v‖0,Ω ∀v ∈ V, (1)

where ‖ · ‖0,Ω stands for the L2(Ω)-norm. Let us note that this inequality is named

after Kurt O. Friedrichs [3]. The optimal (smallest) possible value of the constant CF

such that inequality (1) holds is called Friedrichs’ constant and the symbol CF will

denote this optimal value throughout the paper. The particular value of CF depends

on the domain Ω and on the Dirichlet part of the boundary ΓD.

Friedrichs’ constant scales naturally with the size of Ω. Namely, if ˜Ω = kΩ,
˜ΓD = kΓD, and ˜ΓN = kΓN for some k ∈ R then Friedrichs’ constants ˜CF and CF

corresponding to ˜Ω and Ω, respectively, satisfy ˜CF = kCF.

In special cases, Friedrichs’ constant can be computed analytically. For example,

it was computed for a rectangle, circle, and a circular wedge in [6] for ΓD = ∂Ω.
Result [8] can be used for analytic computation of CF for equilateral and right-

angle triangles. In certain simple cases (e.g. rectangle) it can be computed even if

ΓD 6= ∂Ω. In less special cases there are analytic upper bounds for Friedrichs’ con-

stant. The Faber-Kran inequality [2, 4] yields upper bound CF ≤
√

|Ω|/(j0,1
√
2π),

where |Ω| is the area of the two-dimensional domain Ω and j0,1
.
= 2.404826 is the

first positive root of the Bessel function J0. Similarly, in [7] we can find an esti-

mate CF ≤ π−1 (|a1|
−2 + · · ·+ |ad|

−2)
−1/2

, where |a1|, . . . , |ad| are lengths of sides

of a d-dimensional box in which the domain Ω is contained. Note that both these

estimates require ΓD = ∂Ω. However, in more general cases the value of Friedrichs’

constant has to be computed numerically.

3. Lower bound on Friedrichs’ constant

Friedrichs’ constant CF from (1) is connect with the smallest eigenvalue of the

Laplace eigenvalue problem that can be formulated in a weak sense as: find λi ∈ R

and ui ∈ V , ui 6= 0, i = 1, 2, . . . , such that

(∇ui,∇v) = λi(ui, v) ∀v ∈ V, (2)

where the parenthesis denote the L2(Ω) inner product. If λ1 = mini λi stands for the

smallest eigenvalue of (2) then it can be easily shown, see e.g. [10, 11], that

CF = 1/
√

λ1. (3)
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A standard method for computing approximations of the eigenvalues λi is the

Rayleigh-Ritz method. In this method we consider a finite dimensional subspace

V h ⊂ V and seek λh
i ∈ R and uh

i ∈ V h, uh
i 6= 0 such that

(∇uh
i ,∇vh) = λh

i (u
h
i , v

h) ∀vh ∈ V h.

This is equivalent to the generalized eigenvalue problem Axi = λh
i Mxi for the stiffness

and mass matrices A and M . If a standard finite element method is used then

matrices A and M are sparse and efficient methods of numerical linear algebra can

be used. The Rayleigh-Ritz method is well known for providing an upper bound

on the smallest eigenvalue. Indeed, since the differential operator in (2) and the

corresponding matrices A and M are symmetric, we can express λ1 and λh
1 as minima

of (generalized) Rayleigh quotients over V and V h, respectively, and we obtain

λ1 = min
v∈V
v 6=0

(∇v,∇v)

(v, v)
≤ min

vh∈V h

vh 6=0

(∇vh,∇vh)

(vh, vh)
= min

x∈Rn

x 6=0

xTAx

xTMx
= λh

1 ,

where n = dimV h. Consequently, the approximation C low
F = (λh

1)
−1/2 of Friedrichs’

constant, see (3), is a lower bound on the exact value CF, i.e.,

C low
F = (λh

1)
−1/2 ≤ CF.

4. Upper bound on Friedrichs’ constant

Computing an upper bound of Friedrichs’ constant is a more difficult task, be-

cause it corresponds to the computation of a lower bound of the smallest eigenvalue.

We employ the method of a priori-a posteriori inequalities [5, 9] enhanced by the

complementary approach. Mathematical details, relations, and derivations can be

found in [11]. Here, we just briefly describe the algorithm.

First, use the Rayleigh-Ritz method and compute approximations λh
1 ∈ R and

uh
1 ∈ V of the smallest eigenvalue λ1 and the corresponding eigenfunction u1. Second,

choose a flux reconstruction qh ∈ H(div,Ω) = {q ∈ [L2(Ω)]d : div q ∈ L2(Ω)}.
Third, compute

α =
‖∇uh

1 − qh‖0,Ω
‖uh

1‖0,Ω
, β =

‖λh
1u

h
1 + div qh‖0,Ω
‖uh

1‖0,Ω
, X2 =

1

2

√

α2 + 4(λh
1 − β)−

α

2
.

The lower bound on the smallest eigenvalue and the corresponding upper bound on

Friedrichs’ constant are then given as

X2
2 ≤ λ1 and CF ≤ Cup

F = 1/X2.

Although any qh ∈ H(div,Ω) provides an upper bound on CF, an accurate ap-

proximation is obtained for an appropriate choice of qh, only. In this contribution,

we consider a Raviart-Thomas finite element subspace Wh ⊂ H(div,Ω) based on
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a triangulation of Ω and minimize α2 + β2 over Wh. This minimization is equivalent

to finding qh ∈ Wh such that

(div qh, divψh) + λh
1(qh,ψh) = λh

1(∇uh
1 ,ψh)− λh

1(u
h
1 , divψh) ∀ψh ∈ Wh.

This problem can be solved by standard finite element technology, see e.g. [1]. We

note that this particular flux reconstruction is a brute force solution and if the

efficiency is an issue then a local reconstruction based on ∇uh
1 has to be used.

Further, it is important to note that the method of a priori-a posteriori inequali-

ties is justified only if the approximation λh
1 is sufficiently accurate. In particular, the

closest eigenvalue to λh
1 must be λ1. If λ1 and the second smallest eigenvalues λ2 are

well separated then sufficiently accurate Rayleigh-Ritz approximations of λ1 and λ2

can provide good confidence about the validity of this assumption. In all numerical

experiments present below we experienced exactly this situation.

5. Example A: Friedrichs’ constant for triangles

Friedrichs’ constant CF depends on the size and shape of the domain Ω and on

the size, shape, and position of ΓD. The dependence on the size of Ω is well known,

see Section 2. Therefore, the following numerical experiments concentrate on the

dependence of CF on the shape of Ω (Examples A and B) and on ΓD (Example C).

In all experiments below, the Rayleigh-Ritz approximations λh
1 and uh

1 are com-

puted by linear finite elements on triangular meshes and the reconstructed fluxes qh
by quadratic Raviart-Thomas finite elements on the same triangular mesh.

Ω

a = 1

b

d

Figure 1: The shape of

triangle Ω is given by the

parameters b and d.

0 0.1 0.2 0.3 0.4 0.5
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

b = 1

b = 1/2

b = 1/4

b = 1/8

d

CF

Figure 2: Friedrichs’ constant for triangles with ver-

tices [0, 0], [1, 0], [d, b]. Solid and dashed lines corre-

spond to upper and lower bounds of CF, respectively.

First, we consider Ω to be a nonobtuse triangle and assume ΓD = ∂Ω. We inves-

tigate the dependence of CF on the shape of this triangle. In particular, we consider

triangles inscribed into a rectangle with lengths of sides a and b. The triangles have

vertices with coordinates (0, 0), (a, 0), (d, b), see Figure 1. In particular, we fix a = 1,
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consider four values of b ∈ (0, 1], namely b = 1, 1/2, 1/4, 1/8, and 20 equidistributed

values of d in [0, 1/2]. The two-sided bounds on CF for the resulting triangles are pre-

sented in Figure 2. These bounds were computed on uniform meshes obtained by six

successive uniform refinement steps of the original triangle. Thus, all these meshes

have 46 = 4096 triangles. We see that a fixed value of b yields triangles with the

same area and the parameter d then controls the shape only. However, the observed

dependence of CF on the shape is negligible. We see a considerable dependence of

CF on b, but it is connected with the size of Ω as mentioned in Section 2.

6. Example B: Friedrichs’ constant for regular stars

The value of Friedrichs’ constant is of interest especially for nonconvex domains.

Therefore, we consider Ω to be n-fold regular star with n = 3, 4, . . . , 30 and choose

ΓD = ∂Ω. We put the outer vertices of stars Ω on a circle with radius rout = 1 and

the inner vertices on a circle with radius rin = 1/3, see Figure 3. We use uniform

mesh with 46 · 2n triangles and compute both lower and upper bound on CF.

Figure 4 shows the dependence of CF on n. The value of CF decreases with n
and it seems that in the limit n → ∞ it converges to Friedrichs’ constant of a circle

with radius rin = 1/3, which is approximately 0.138610. We note that Friedrichs’

constant for a circle with radius rout = 1 is approximately 0.415831. The increasing

gap between the lower and upper bound of CF is probably caused by singularities

of the eigenfunction u1 at the obtuse angles. The strength of these singularities

increases with the size of these angles, but the resolution of the used meshes stays

the same.

rin
rout

Figure 3: Illustration of 7-fold regular

star with inner and outer radii.

5 10 15 20 25 30
0.1

0.12

0.14

0.16

0.18

n

CF

 

 

upper bound
lower bound
circle r=1/3

Figure 4: Values of Friedrichs’ constant for

n-fold regular stars.

7. Example C: Dependence on the Dirichlet part

In the final example we investigate the dependence of CF on the Dirichlet part ΓD

of the boundary ∂Ω. We consider a fixed L-shaped domain Ω and vary the position

199



and size of ΓD. The boundary ∂Ω is split into 16 segments of unit length. The part ΓD

is chosen as a connected curve of length |ΓD| = ℓ, i.e. it consists of ℓ segments. In

this experiment we consider |ΓD| = 1, 5, 11, and 15. For each length we compute the

lower and upper bound of CF for all 16 positions of ΓD on ∂Ω. The positions are

indexed by the number of the first segment of ΓD in the counterclockwise sense, see

Figure 5.

Figure 6 presents the dependence of CF on the position of ΓD for the four con-

sidered sizes |ΓD|. We observe strong dependence both on the position and size. We

also see similar values of CF for almost symmetric positions, for instance for |ΓD| = 1

and positions 4 and 11 or for |ΓD| = 11 and positions 7 and 14 (these positions

correspond to peeks in the graphs in both cases).

1 2 3

4

5
6

7

8

9

10

11

12

13

14

15

16

1

|ΓD| = 5

position 13

ΓD

Figure 5: The L-shaped domain and

enumeration of boundary segments

(left). An example of a position and

size of ΓD (right).

1 2 3 4 5 6 7 8 9 10111213141516
0

1

2

3

4

5

position of ΓD

CF

 

 
|ΓD| = 1

|ΓD| = 5

|ΓD| = 11

|ΓD| = 15

Figure 6: Dependence of Friedrichs’ con-

stant on the position and size of ΓD. Upper

bounds are indicated by solid lines and

lower bounds by dashed lines.

8. Conclusions

In this contribution we present a method for computing guaranteed lower and

upper bounds of Friedrichs’ constant or equivalently for lower and upper bounds of

eigenvalues of the corresponding differential operator. The main output is a numer-

ical study of the value of Friedrichs’ constant CF in various cases including convex

and nonconvex domains. We observe the dependence of CF on the shape of the do-

main Ω and on the size and position of the Dirichlet part ΓD of the boundary ∂Ω.
While we observed negligible dependence of CF on the shape of nonobtuse triangles,

the dependence on the size and position of the Dirichlet part ΓD is significant in

majority of tested cases.

Let us conclude this contribution by a note that the presented method can be

easily generalized to compute two-sided bounds of the optimal constants in similar
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inequalities, like the trace inequalities, Poincaré inequality, and Korn’s inequality.

For all these inequalities the computation of the optimal constant reduces to the

computation of the smallest eigenvalue of a differential operator.
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Abstract

We deal with a nonstationary semilinear singularly perturbed convection–diffusion

problem. We discretize this problem by discontinuous Galerkin method in space and

by midpoint rule in time. We present diffusion–uniform error estimates with sketches

of proofs.

1. Introduction

Our aim is development of sufficiently robust, accurate and efficient numerical

schemes for solving nonlinear singularly perturbed convection–diffusion equations,

which describe many important topics, e.g. fluid dynamics.

Singularly perturbed convection–diffusion equations represent very difficult prob-

lems, since these problems lie on the edge between elliptic and hyperbolic problems.

From numerical point of view these problems are unpleasant, since they have steep

gradients or discontinuities in the solution even for smooth data. To overcome these

difficulties we employ discontinuous Galerkin method, which uses piecewise discon-

tinuous polynomial functions. It seems that such a weaker inter–element connection

partially suppresses spurious oscillations in the discrete solution, which are present

in the standard finite element solution.

Applying standard parabolic techniques to this problem we obtain diffusion de-

pendent error estimates – typically with the constant e1/ε, where ε is the diffusion

parameter, see e.g. [1] or [4]. In practical cases from compressible fluid dynamics,

where ε is about 10−5 to 10−9, these error estimates are useless.

Our aim is to derive a priori error estimates that are uniform with respect to

the diffusion parameter. A majority of analysis of singularly perturbed problems

devoted to the uniform a priori error estimates concerns linear problems only, see

e.g. [5].
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The technique, how to overcome the nonlinearity in the convective part, is pre-

sented in [8], with applications to the explicit time stepping schemes. The technique

is based on the linearization of the problem by Taylor expansion, where the problem

is divided into linear part and higher order nonlinear reminder. How to deal with

the linear part is known from the analysis of purely linear problems. The analysis

of the nonlinear reminder is more tricky and takes advantage of higher order of the

reminder and of higher order of the error at previous time levels. In [6] we can find

the extension of this result to the semidiscrete problem and to the backward Euler

method, where (in contrast to explicit schemes) one needs higher order of the error

at the actual time level and not at the previous one. This problem is solved by

continuous mathematical induction. This paper extends the technique from [6] to

midpoint rule.

2. Continuous problem

Let Ω ⊂ R
d be a bounded polyhedral domain and T > 0. We set QT = Ω×(0, T ).

Let us consider the following problem: Find u : QT → R such that

∂u

∂t
+∇ · f(u)− ε∆u = g in QT , (1)

u
∣

∣

∂Ω×(0,T ) = 0,

u(x, 0) = u0(x), x ∈ Ω.

We assume f = (f1, . . . , fd), fs ∈ C2(R), fs(0) = 0, s = 1, . . . , d represents

convective terms, ε ≥ 0, g ∈ C([0, T ];L2(Ω)) and u0 ∈ L2(Ω) is an initial condition.

We assume that the weak solution of (1) is sufficiently regular, namely,

u ∈ W 1,∞(0, T ;Hp+1(Ω)) ∩W 2,∞(0, T ;H2(Ω)), u(3) ∈ L∞(0, T ;L2(Ω)), (2)

where u(k) = ∂ku/∂tk, an integer p ≥ 1 will denote a given degree of polynomial

approximations in space.

3. Discrete problem

To simplify the expressions we use the notation (·, ·) for L2 scalar product and ‖·‖
for L2 norm. We employ the symmetric interior penalty Galerkin (SIPG) method for

the space semi-discretization of (1), for details see [2]. Let Th (h > 0) be a partition

of Ω into a finite number of closed d-dimensional simplices K with mutually disjoint

interiors. Let Sh = {w;w|K ∈ Pp(K) ∀K ∈ Th} denote the space of discontinuous

piecewise polynomial functions of degree p on each K ∈ Th. Then we say that

the function uh ∈ C1(0, T ;Sh) is the semi-discrete approximate solution of (1) if it

satisfies the conditions

(

∂uh

∂t
(t), w

)

+ εAh(uh(t), w) + bh(uh(t), w) = ℓh(w) (t) ∀w ∈ Sh, ∀ t ∈ [0, T ], (3)
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and (uh(0), w) = (u0, w) ∀w ∈ Sh. The bilinear form Ah represents the diffusion

term with a sufficiently large interior and boundary penalty, bh is a nonlinear form

representing convective term based on the numerical fluxes well known from the

finite volume method and ℓh represents the source term. For the exact definition of

forms Ah, bh and ℓh see e.g. [2]. We assume the numerical fluxes H to be Lipschitz

continuous, conservative and consistent. Moreover, we assume that the numerical

fluxes are E–fluxes:

(H(v, w, n)− f(q) · n)(v − w) ≥ 0, ∀v, w ∈ R, ∀q between v and w, (4)

where n ∈ R
d is an unit vector.

We find that the weak solution of (1) with property (2) satisfies the identity

(

∂u

∂t
(t), w

)

+ εAh(u(t), w) + bh(u(t), w) = ℓh(w) (t) (5)

for all w ∈ Sh and all t ∈ (0, T ).
For simplicity we assume time partition tm = mτ , m = 0, . . . , r with the time

step τ = T/r. To simplify the future expressions we set the notation vm = v(tm).

Definition 1. We say that the set of functions Um ∈ Sh, m = 0, . . . , r is an

approximate solution of problem (1) obtained by midpoint–DGFE scheme if

(Um − Um−1, w) +
τε

2
Ah(U

m + Um−1, w) + τbh

(

Um + Um−1

2
, w

)

(6)

= τℓh(w)(tm−1 + τ/2) ∀w ∈ Sh,

(U0, w) = (u0, w) ∀w ∈ Sh.

4. Error estimates

We denote the energy norm |||w|||2 := Ah(w,w) ∀w ∈ Sh. Note that the inverse

inequality takes the following form |||w||| ≤ Ch−1‖w‖ for w ∈ Sh. Let Π be the L2

orthogonal projection on Sh.

We summarize the properties of the forms Ah and bh.

Lemma 1. Let u satisfy (2). Then

Ah(v, w) ≤ C|||v||| |||w||| ∀v, w ∈ Sh, (7)

Ah(u(tm−1 + s/2), w)− Ah

(

u(s) + um−1

2
, w

)

≤ Cτ 2|||w||| ∀w ∈ Sh, (8)

∀s ∈ [tm−1, tm],

Ah(Πu− u, w) ≤ Chp|||w||| ∀w ∈ Sh. (9)

The proof of (7) and (9) can be done in a similar way as in [3, Lemma 9]. The

proof of (8) can be done similarly as in [7, Lemma 4.3].
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Lemma 2. Let u satisfy (2). Then

bh(v, w)− bh(v̄, w) ≤ C‖v − v̄‖ |||w||| ∀v, v̄, w ∈ Sh (10)

bh(u(tm−1 + s/2), w)− bh

(

u(s) + um−1

2
, w

)

≤ Cτ 2|||w||| ∀w ∈ Sh, (11)

∀s ∈ [tm−1, tm],

bh(v, v − Πu)− bh(u, v − Πu) ≤ C

(

1 +
‖v − u‖2

∞

h2

)

(h2p+1 + ‖v − Πu‖2) (12)

∀v ∈ Sh.

The proof of (10) can be found in [3], the proof of estimate (11) uses the regularity

of arguments with respect to space and standard error estimates and (12) can be

found in [6].

Our goal is to investigate the error estimates of the approximate solution Um,

m = 0, . . . , r obtained by the method (6). To do this we employ the strategy of

continuous extension of the discrete solution mimicking to the strategy in [6].

Definition 2. Let s ∈ (0, τ ]. We say that the function U(tm−1 + s) ∈ Sh is a con-

tinuated approximate solution of problem (1) obtained by midpoint–DGFE scheme if

(U(tm−1 + s)− Um−1, w) +
sε

2
Ah(U(tm−1 + s) + Um−1, w)

+ sbh

(

U(tm−1 + s) + Um−1

2
, w

)

= sℓh(w)(tm−1 + s/2) ∀w ∈ Sh. (13)

It is obvious that U(tm) = Um.

We denote the left–hand side and right–hand side from Definition 2

Bm
s (v, w) = (v − Um−1, w) +

sε

2
Ah(v + Um−1, w) + sbh

(

v + Um−1

2
, w

)

, (14)

Lm
s (w) = sℓh(w)(tm−1 + s/2). (15)

We shall show that Bm
s is strongly monotone on Sh:

Bm
s (v, v − w)− Bm

s (w, v − w) ≥ ‖v − w‖2 +
sε

2
|||v − w|||2 − Cs‖v − w‖ |||v − w|||

≥

(

1 +
sε

h2
−

Cs

h

)

‖v − w‖2 = M‖v − w‖2 (16)

for sufficiently small s respectively τ . We shall show that Bm
s is Lipschitz continuous

on Sh:

Bm
s (v, w)− Bm

s (v̄, w) ≤ ‖v − w‖ ‖w‖+ C
sε

2
|||v − v̄||| |||w|||+ Cs‖v − v̄‖ |||w||| (17)

≤

(

1 +
Csε

h2
+

Cs

h

)

‖v − v̄‖ ‖w‖ = C‖v − v̄‖ ‖w‖.
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Since right–hand side Lm
s is evidently Lipschitz continuous, we can employ nonlinear

Lax–Milgram lemma to prove the existence of the continuated discrete solution and

classical discrete solution, respectively.

Now we should show that the continuated discrete solution is really continuous.

Since the proof is the same at each time interval (tm−1, tm], we show it for the

simplicity only on the first one. Let t, s ∈ (0, τ ]. Then

M‖U(t) − U(s)‖2 ≤ B1
t (U(t), U(t)− U(s))− B1

t (U(s), U(t)− U(s)) (18)

= L1
t (U(t)− U(s))− L1

s(U(t)− U(s))

+B1
s (U(s), U(t)− U(s))−B1

t (U(s), U(t)− U(s)).

Since the terms on the second and third row tend to zero if |t − s| tends zero we

obtain continuity. Analogically we can prove the continuity at 0+. Since the exact

solution u is continuous and since we have continuity on the closed interval [0, T ],
we can see that the error U(t)− u(t) is uniformly continuous.

As the final step we shall derive the error estimate of the continuated solution at

arbitrary time t ∈ [0, T ] which immediately imply the error estimate for the classical

method.

In the sequel we use the notation ξ(t) = U(t) − Πu(t), η(t) = Πu(t) − u(t) and
e(t) = U(t)− u(t) = ξ(t) + η(t).

Lemma 3. Let u satisfy (2). Then

‖η(t)‖ ≤ Chp+1, (19)

(u(tm−1 + s)− um−1 − s
∂u

∂t
(tm−1 + s/2), w) ≤ Cs3‖w‖ ∀w ∈ Sh, ∀s (20)

(η(tm−1 + s)− ηm−1, w) ≤ Cshp+1‖w‖ ∀w ∈ Sh, ∀s (21)

Proof. The estimate (19) is standard estimate for L2 projection approximation. The

estimate (20) can be done similarly as in [4] and the last estimate (21) can be found

in [1].

Lemma 4. Let p > d/2. Let s ∈ (0, τ ]. If ‖e(t)‖ ≤ h1+d/2 for t ≤ tm−1 + s, then

sup
t∈[0,tm−1+s]

‖e(t)‖2 ≤ C2
T (h

2p+1 + εh2p + τ 4), (22)

where the constant CT is independent of h, τ, ε.
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Proof. Multiplying (5) for t = tm−1 + s/2 by s, subtracting from (13) and adding

several terms we get

(

ξ(s)− ξm−1, w) +
sε

2
Ah(ξ(s) + ξm−1), w

)

(23)

≤

(

s
∂u

∂t
(tm−1 + s/2)− u(s) + um−1, w

)

+s

(

bh(u(tm−1 + s/2), w)− bh

(

u(s) + um−1

2
, w

))

+ (η(s)− ηm−1, w)

+s

(

bh

(

u(s) + um−1

2
, w

)

− bh

(

U(s) + Um−1

2
, w

))

−
sε

2
Ah(η(s) + ηm−1), w)

+s

(

Ah(u(tm−1 + s/2), w)− Ah

(

u(s) + um−1

2
, w

))

.

Setting w = ξ(s) + ξm−1 and using Lemmas 1–3 to estimate the right–hand side we

get

‖ξ(s)‖2 − ‖ξm−1‖2

≤ Cs

(

1 +
‖e(s) + em−1‖2

∞

h2

)

(εh2p + h2p+1 + τ 2 + ‖ξ(s)‖2 + ‖ξm−1‖2).

Using the assumptions we can get rid of the unpleasant term ‖e(s)+ em−1‖2
∞

/h2 and

by standard Gronwall lemma we can finish the proof.

We are ready to present the main result.

Theorem 5. Let p > 1 + d/2. Let h1, τ1 > 0 are such that

C2
T (h

2p+1
1 + εh2p

1 + τ 41 ) ≤
1

2
h2+d
1 . (24)

Let τ1 is sufficiently small to guarantee the existence and continuity of the continuated

discrete solution. Then for all h ∈ (0, h1) and τ ∈ (0, τ1) we get

sup
t∈[0,T ]

‖e(t)‖2 ≤ C2
T (h

2p+1 + εh2p + τ 4), (25)

where the constant CT is independent of h, τ, ε.

Proof. We will follow the idea of continuous mathematical induction from [6]. For

time t = 0 it is easy to see that the error estimate holds true, because the error is

in fact the error of L2 projection in initial data, which is sufficiently small under the

assumptions of the theorem. Let as assume that the error estimate holds true on

the interval [0, s]. According to the assumption (24) we can see that the error can

be estimated by ‖e(t)‖ ≤ 1
2
h1+d/2, t ∈ [0, s]. Since the error e(t) is continuous (even
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uniformly continuous) we know that there exists some δ > 0 such that ‖e(t)‖ ≤
h1+d/2, t ∈ [0, s + δ] and we can see that it is possible to use Lemma 4 even on

the interval [0, s + δ], which guarantees the error estimate on [0, s + δ]. Since the

error is uniformly continuous, we have fixed δ > 0 during the process and using the

argument repeatedly we obtain the result.
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Abstract

Simple modifications of the limited-memory BFGS method (L-BFGS) for large

scale unconstrained optimization are considered, which consist in corrections of the

used difference vectors (derived from the idea of conjugate directions), utilizing infor-

mation from the preceding iteration. For quadratic objective functions, the improve-

ment of convergence is the best one in some sense and all stored difference vectors

are conjugate for unit stepsizes. The algorithm is globally convergent for convex suffi-

ciently smooth functions. Numerical experiments indicate that the new method often

improves the L-BFGS method significantly.

1. Introduction

We propose some modifications of the L-BFGS method (see [5], [10]) for large

scale unconstrained minimization of the differentiable function f : RN → R. Simi-

larly as in the multi-step quasi-Newton methods (see e.g. [9]), we utilize information

from the preceding iteration. However, while the multi-step methods derive the cor-

rections of the difference vectors from various interpolation methods, our approach

is based on the idea of conjugate directions (see e.g. [4, 11]).

The L-BFGS method belongs to the variable metric (VM) or quasi-Newton line

search methods, see [4], [8]. They start with an initial point x0 ∈ RN and generate

iterations xk+1 ∈ RN by the process xk+1 = xk+tkdk, k ≥ 0, where dk is the direction
vector and tk > 0 is a stepsize, usually chosen in such a way that

fk+1 − fk ≤ ε1tkg
T
k dk, gTk+1dk ≥ ε2g

T
k dk, (1)

k ≥ 0, where 0 < ε1 < 1/2, ε1 < ε2 < 1, fk = f(xk), gk = ∇f(xk) and dk =

−Hkgk with a symmetric positive definite matrix Hk; usually H0 = I and Hk+1 is

obtained fromHk by a VM update to satisfy the quasi-Newton conditionHk+1yk = sk
(see [4, 8]), where sk = xk+1 − xk = tkdk and yk = gk+1 − gk, k ≥ 0.

Among VM methods, the BFGS method belongs to the most efficient; the update

formula can be written in the form (note that bk > 0 for gk 6= 0 by (1))

Hk+1 = (1/bk)sks
T
k + VkHkV

T
k , bk = sTkyk, Vk = I − (1/bk)sky

T
k ,
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k ≥ 0, see [4, 8, 11], on which the L-BFGS method – a limited-memory adaptation

of the BFGS method – is based. Instead of an N × N matrix Hk, only the last

m̃ + 1 couples {sj, yj}
k
j=k−m̃ are stored, where m̃ = min(k,m−1) and m ≥ 1 is

a given parameter. The direction vector is computed by the Strang recurrences,

see [10], and still satisfies dk+1 = −Hk+1gk+1, k ≥ 0, but matrix Hk+1 is not formed

explicitly.

Here we will investigate such corrections of vectors sk, yk which provide conjugacy

of consecutive corrected vectors. Thus we will define corrected quantities s̄k, ȳk, b̄k
and V̄k, k ≥ 0, by s̄0 = s0, ȳ0 = y0, b̄0 = b0, V̄0 = V0 and

s̄k = sk − αks̄k−1, ȳk = yk − βkȳk−1, b̄k = s̄Tk ȳk, V̄k = I − (1/b̄k)s̄kȳ
T
k , (2)

k > 0, with such αk, βk ∈ R that b̄k > 0. Correspondingly, we will use a direction

vector dk = −H̄kgk, k ≥ 0, where H̄0 = I and symmetric positive definite matrix

H̄k+1 = (sTkyk/|yk|
2) V̄k · · · V̄k−m̃ V̄ T

k−m̃ · · · V̄ T
k

+ (1/b̄k−m̃) V̄k · · · V̄k−m̃+1 s̄k−m̃s̄
T
k−m̃ V̄ T

k−m̃+1 · · · V̄
T
k (3)

+ · · · + (1/b̄k−1) V̄k s̄k−1s̄
T
k−1 V̄

T
k + (1/b̄k) s̄ks̄

T
k , k ≥ 0,

satisfies the quasi-Newton condition H̄k+1ȳk = s̄k and is obtained by the repeated

BFGS update of (sTkyk/|yk|
2)I with corrected vectors. We denote B̄k = H̄−1

k , k ≥ 0.

In Section 2 we investigate the standard BFGS update with corrected vectors

H̄+ = (1/b̄)s̄s̄T + V̄ H̄V̄ T , b̄ = s̄T ȳ, V̄ = I − (1/b̄)s̄ȳT , (4)

(in the simplified form) of any symmetric positive definite matrix H̄ with corrected

difference vectors s̄ = s−αs̄
−
, ȳ = y−βȳ

−
and discuss the choice of parameters α, β.

In Section 3 we focus on quadratic functions and show optimality of our choice of

parameters and conjugacy and other properties for unit stepsizes. Application to

limited-memory methods and the corresponding algorithm are described in Section 4,

global convergence of the algorithm is established in Section 5 and numerical results

are reported in Section 6. Details and proofs of assertions can be found in [13].

2. The BFGS update with corrected vectors

The following lemma enables us to distinguish roles of products s̄T ȳ
−
, s̄T

−

ȳ and

shows that, under some assumptions, the conjugacy of difference vectors s̄, s̄
−
with

respect to matrices B̄ = H̄−1, B̄+ = H̄−1
+ is equivalent to the satisfaction of condition

H̄+ȳ− = s̄
−
. Note that condition H̄ȳ

−
= s̄

−
represents the quasi-Newton condition

from the preceding update, which is satisfied for m > 1, see [13].

Lemma 1. Let H̄ be any symmetric positive definite matrix with H̄ȳ
−
= s̄

−
, ma-

trix H̄+ be given by (4) with b̄ > 0 and ∆1 = (H̄+ȳ−− s̄
−
)T B̄+(H̄+ȳ−− s̄

−
). Then

∆1 =
[

(s̄T
−

ȳ−s̄Tȳ
−
)2 + ω(s̄Tȳ

−
)2
]

/b̄ , (5)
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where ω ≥ 0, with ω = 0 only in case of dependency of vectors s̄, H̄ȳ. If vectors s̄, H̄ȳ
are linearly independent then H̄+ satisfies H̄+ȳ− = s̄

−
if and only if vectors s̄, s̄

−

are conjugate with respect to matrices B̄, B̄+.

Since value ω could be large, we can see from relation (5) that mainly value s̄Tȳ
−

should be close to zero, to have ∆1 small. Therefore we prefer the choice α = sTȳ
−
/b̄

−
,

for which s̄Tȳ
−
= 0. Similarly, the basic choice of β is βZ = s̄T

−

y/b̄
−
, which yields

s̄T
−

ȳ = 0 (thus H̄+ȳ−= s̄
−
by ∆1 = 0) and has some interesting properties.

Theorem 2. Let H̄ be any symmetric positive definite matrix with H̄ȳ
−
= s̄

−
and

matrix H̄+ be given by (4) with b̄ > 0. If α = sTȳ
−
/b̄

−
then s̄Tȳ

−
= 0, b̄ = b−α s̄T

−

y
and both value ā and the condition number of matrix H̄1/2B̄+H̄

1/2 as functions of β
are minimized by the choice β= s̄T

−

y/b̄
−
.

Satisfaction of condition H̄+ȳ− = s̄
−

also guarantees that matrix H̄+ is closer

to H̄ than to H̄
−
in some sense, as we can see from Theorem 3 with H̄

−
, H̄ , s̄

−
, ȳ

−

instead of H̄ , H̄+, s̄, ȳ and G̃ = H̄−1
+ (‖.‖F denotes the Frobenius matrix norm).

Theorem 3. Let H̄ be any symmetric positive definite matrix, matrix H̄+ be given

by (4) with b̄ > 0, G̃ be any symmetric positive definite matrix satisfying G̃s̄ = ȳ,
W+= G̃1/2H̄+G̃

1/2 and W = G̃1/2H̄G̃1/2. Then

‖I −W+‖
2
F − ‖I −W‖2F = −‖W+ −W‖2F ≤ −

(

ā/b̄− 1
)2
. (6)

The following lemma indicates that β should also be near to α, to have |H̄+y−s|
small. E.g. the choice β = ±

√
βZα has interesting properties.

Lemma 4. Let H̄ be any symmetric positive definite matrix with H̄ȳ
−
= s̄

−
and

matrix H̄+ be given by (4) with b̄ > 0. If α = sTȳ
−
/b̄

−
then ∆1 = (s̄T

−

ȳ)2/b̄ and

(H̄+y − s)T B̄+(H̄+y − s) = b̄
−
[(β − α)2 + (β − βZ)

2(sTȳ
−
)2/(b̄ b̄

−
)]. (7)

Moreover, if β2=sTȳ
−
s̄T
−

y/b̄2
−

, then yT (H̄+y − s) = 0.

3. Results for quadratic functions

In this section we suppose that f is a quadratic function with a symmetric positive

definite matrix G and that β=α, which is a natural choice, if we want to have ȳ=Gs̄,
similarly as for non-corrected vectors. Here we consider only the G-conjugacy of

vectors.

The conjugacy of s̄, s̄
−

can be achieved by the choice α = sTȳ
−
/b̄

−
= s̄T

−

y/b̄
−

by (2). The following theorem shows that this choice is the best in some sense.

Theorem 5. Let α̂ = sTȳ
−
/b̄

−
= s̄T

−

y/b̄
−
, H̄ be any symmetric positive definite

matrix with H̄ȳ
−
= s̄

−
, H̄+ be given by (4) with β = α and let f be a quadratic

function f(x) = 1
2
(x − x∗)TG(x − x∗), x∗ ∈ RN , with a symmetric positive definite

matrix G. If vectors s, s̄
−
are linearly independent, then b̄ > 0 and the choice α= α̂

implies H̄+y=s and minimizes the values b̄, ‖G1/2H̄+G
1/2 − I‖F as functions of α.
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The L-BFGS method with exact line searches generates conjugate directions vec-

tors and preserves m̃ previous quasi-Newton conditions, see e.g. [10]. Similarly for

update (4) with unit stepsizes we get that all stored vectors s̄k are conjugate and m̃
previous quasi-Newton conditions are preserved, if every stepsize is unit.

Theorem 6. Let x0 ∈ RN , x∗ ∈ RN , k̄ > 0, m ≥ 1, f be the quadratic function

f(x) = 1
2
(x−x∗)TG(x−x∗) with a symmetric positive definite matrix G, and let for

0 ≤ k ≤ k̄ iterations xk+1 = xk + sk be generated by sk = −tkH̄kgk, gk = ∇f(xk),

tk > 0, with matrices H̄k defined in the following way: H̄0 = I and matrices H̄k+1,

0 ≤ k < k̄, are given by (3), where m̃ = min(k,m−1), yk = gk+1− gk, and quantities

s̄j, ȳj, V̄j and b̄j, j ≥ 0, are formally defined by s̄0 = s0, ȳ0 = y0, s̄j+1 = sj+1−αj+1s̄j,
ȳj+1 = yj+1 − αj+1ȳj, αj+1= sTj+1ȳj/b̄j, V̄j = I − (1/b̄j)s̄j ȳ

T
j , b̄j = s̄Tj ȳj.

If every generated vector sk is linearly independent of s̄k−1, 0 < k ≤ k̄, then the

method is well defined. Moreover, if tk+1 = 1 for some k, 0 ≤ k < k̄, it holds

H̄k+iȳk = s̄k, s̄TkGs̄k+i = 0, s̄Tk gk+i+1 = 0, 1 ≤ i ≤ min(m̃+1, k̄−k). (8)

4. Application to limited-memory methods

From the theory in Section 3 we can deduce that we should use the corrected

difference vectors whenever objective function is close to a quadratic function. As

measure of deviation from a quadratic function at points xk−1, xk, xk+1, e.g. value

|sTk yk−1 − sTk−1yk| could serve (zero for quadratic functions), k > 0; we use value

|sTk ȳk−1− s̄Tk−1yk| = b̄k−1|αk−βk|, which gives very similar results. We do not correct

if it is greater than b̄2k−1/bk, if (s
T
k ȳk−1).(s̄

T
k−1yk) ≤ 0 or if b̄k ≤ 10−6bk.

Value βk = sgn(αk)
√

θk/b̄k−1, corresponding to the choice in Lemma 4, appears

to be suitable if value b̄k is sufficiently large with respect to bk (we use condition

b̄k > 10−2bk). This choice satisfies |βk| <
√

bk/b̄k−1; it is a reason why we use this

value βk also in case that |s̄Tk−1yk/b̄k−1| > 2
√

bk/b̄k−1 to prove global convergence.

Global convergence can be easily established (in a similar way as for the L-BFGS

method, see [5]), if |s̄k|/|sk| ≤ ∆ and |ȳk|/|yk| ≤ ∆, k > 0, where ∆ > 1 is a constant.

If this condition is not satisfied, it suffices to replace the oldest saved vectors s̄k−m̃,

ȳk−m̃ e.g. by sk, yk. Note that in our numerical experiments with N = 1000, value

|ȳk|/|yk| was rarely greater than 10 and value |s̄k|/|sk| greater than 50.

We now state the method in details. For simplicity, we omit stopping criteria.

Algorithm 4.1

Data: The number m ≥ 1 of VM updates per iteration, line search parameters ε1,
ε2, 0<ε1<1/2, ε1<ε2<1, and correction parameter ∆ > 1.

Step 0: Initiation. Choose starting point x0 ∈ RN , define starting matrix H̄0
0 = I

and direction vector d0 = −∇f(x0) and initiate iteration counter k to zero.

Step 1: Line search. Compute xk+1 = xk+tkdk, where tk satisfies (1), sk = xk+1−xk,

gk+1=∇f(xk+1), yk=gk+1−gk and bk=sTkyk. If k=0 set s̄k=sk, ȳk=yk and

go to Step 4.
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Step 2: Correction preparation. Set αk = sTk ȳk−1/b̄k−1, βk = s̄Tk−1yk/b̄k−1. If αkβk ≤ 0

or b̄k ≤ 10−6bk or |αk − βk| ≥ b̄k−1/bk, set αk = βk = 0 and go to Step 3. If

|βk| > 2
√

bk/b̄k−1 or b̄k > 10−2bk, replace βk by βk

√

αk/βk.

Step 3: Correction. Set s̄k = sk − αks̄k−1, ȳk = yk − βkȳk−1.

Step 4: Update definition. Set m̃ = min(k,m−1), b̄k = s̄Tkȳk and define V̄k = I−
(1/b̄k)s̄kȳ

T
k . If |s̄k−m̃|/|sk−m̃| > ∆ or |ȳk−m̃|/|yk−m̃| > ∆, set s̄k−m̃ = sk,

ȳk−m̃ = yk and b̄k−m̃ = bk. Define H̄k+1 by (3).

Step 5: Direction vector. Compute dk+1 = −H̄k+1gk+1 by the Strang recurrences, set

k := k + 1 and go to Step 1.

5. Global convergence

Assumption 7. The objective function f : RN → R is bounded from below and

uniformly convex with bounded second-order derivatives (i.e. 0 < G ≤ λ(G(x)) ≤
λ(G(x)) ≤ G < ∞, x ∈ RN , where λ(G(x)) and λ(G(x)) are the lowest and the

greatest eigenvalues of the Hessian matrix G(x)).

Theorem 8. If objective function f satisfies Assumption 7, Algorithm4.1 generates

a sequence {gk} that either satisfies lim
k→∞

|gk|=0 or terminates with gk=0 for some k.

6. Numerical results

In this section, we demonstrate the influence of vector corrections on the number

of evaluations (NFE) and computational time, using the following collections of test

problems: Test 11 from [7] (55 chosen problems), which are modified problems from

CUTE collection [2] with N ranging from 1000 to 5000, test from [1], termed Test 12

here, 73 problems, N= 5000, Test 25 from [6] (68 chosen problems), N=10000.

Table 1 contains results for the following limited-memory methods: L-BFGS,

see [10], method from [12] (Algorithm3.1 with σ = 0.4) and new Algorithm4.1. We

have used m = 5, ∆ = 100, the final precision ‖g(x⋆)‖
∞

≤ 10−6, ε1 = 10−4 and

ε2 = 0.8.
Test 11 Test 12 Test 25

Method NFE Time NFE Time NFE Time

L-BFGS 80539 32.50 43648 46.17 462104 519.40

Alg. 3.1 in [12] 80328 34.52 43182 56.67 512880 649.15

Algorithm4.1 64395 30.20 34472 37.57 296321 381.08

Table 1. Comparison of the selected methods.

For a better demonstration of both the efficiency and the reliability, we compare

selected optimization methods for Test 25 by using performance profiles introduced

in [3]. The value of πM(τ) at τ = 0 gives the percentage of test problems for which

the method M is the best and the value for τ large enough is the percentage of

test problems that method M can solve. The relative efficiency and reliability of

each method can be directly seen from the performance profiles: the higher is the

particular curve the better is the corresponding method.
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Figure 1: (Test 25, m = 5, 68 problems, N=10 000)

Acknowledgements

This work was supported by RVO: 67985807.

References

[1] Andrei, N.: An unconstrained optimization test functions collection. Advanced

Modeling and Optimization 10 (2008), 147–161.

[2] Bongartz, I., Conn, A.R., Gould, N., and Toint, P. L.: CUTE: constrained

and unconstrained testing environment. ACM Trans. Math. Software 21 (1995),

123–160.
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Abstract

The coefficients of the greatest common divisor of two polynomials f and g (GCD(f, g))

can be obtained from the Sylvester subresultant matrix Sj(f, g) transformed to lower

triangular form, where 1 ≤ j ≤ d and d = deg(GCD(f, g)) needs to be computed.

Firstly, it is supposed that the coefficients of polynomials are given exactly. Trans-

formations of Sj(f, g) for an arbitrary allowable j are in details described and an

algorithm for the calculation of the GCD(f, g) is formulated. If inexact polynomials

are given, then an approximate greatest common divisor (AGCD) is introduced. The

considered techniques for an AGCD computations are shortly discussed and numeri-

cally compared in the presented paper.

1. Introduction

Consider the polynomials f and g,

f(x) = a0x
m + a1x

m−1 + · · ·+ am−1x+ am, a0 × am 6= 0, (1)

g(x) = b0x
n + b1x

n−1 + · · ·+ bn−1x+ bn, b0 × bn 6= 0. (2)

In the first part of this paper it is assumed that the coefficients are given exactly,

all calculations are performed symbolically and m ≥ n. Let us put f0 := f , f1 := g.
The polynomials

fr(x) = qr(x)fr+1(x) + fr+2(x), deg(fr+2) < deg(fr+1),

for r = 0, 1, 2, . . . , fr 6= 0 ∀r ≤ k

in the successive divisions of Euclid’s algorithm are well defined, [1, 7, 15]. If fk+1 = 0

then fk is the GCD of f0 and f1, which is written as fk = GCD(f0, f1) = GCD(f, g).
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The Sylvester matrix S(f, g) ∈ R
(m+n)×(m+n), [1, 3, 4, 7, 12, 13, 15], is the matrix

S(f, g) =

























a0 b0
a1 a0 b1 b0
· a1 · · b1 ·
· · · a0 · · · b0
am · · a1 bn · · b1

am · · bn · ·
· · · ·

am bn

























.

︸ ︷︷ ︸

n columns

︸ ︷︷ ︸

m columns

Let j be an integer, 1 ≤ j ≤ n. The jth Sylvester subresultant matrix Sj(f, g) ∈
R

(m+n−j+1)×(m+n−2j+2) is formed by deleting the last (j−1) rows, and the last (j−1)

columns of the coefficients of f and g of S(f, g). The vector ei denotes the ith column

of the identity r× r matrix Ir, and the matrix Ei,j(σ) = Ir − σeie
T
j , where σ ∈ R, is

the elementary triangular matrix. It is lower and upper triangular matrix for i ≥ j
and i ≤ j, respectively.

Transformations of the Sylvester subresultant matrix Sj(f, g) that correspond

to the first stage of Euclid’s algorithm can be expressed by multiplying Sj(f, g) by
the elementary triangular matrices. The polynomial f2 arises from the first stage.

For illustration, let us consider the Sylvester resultant matrix S2 := S2(f, g) for the
polynomials f and g of degrees m = 6 and n = 3.

The first step in the transformation of S2 consists of the subtraction of the third

and fourth column, multiplied by σ1 = a0/b0, from the first and second column,

respectively. This is implemented in such a way that the matrix S2 is multiplied

successively by the matrices E3,1(σ1) and E4,2(σ1) yielding S
(1)
2 := S2E3,1(σ1)E4,2(σ1),

S
(1)
2 =































0 b0

a
(1)
1 0 b1 b0

a
(1)
2 a

(1)
1 b2 b1 b0

a
(1)
3 a

(1)
2 b3 b2 b1 b0

a
(1)
4 a

(1)
3 b3 b2 b1 b0

a
(1)
5 a

(1)
4 b3 b2 b1

a
(1)
6 a

(1)
5 b3 b2

a
(1)
6 b3































,

where

a
(1)
i =







ai − (a0/b0)
︸ ︷︷ ︸

σ1

bi i = 1, 2, 3

ai i = 4, 5, 6.

Analogously, the numbers σ2, σ3

and σ4 can be constructed such that

the firs two columns of the matrix

S
(4)
2 , where successively

S
(2)
2 = S

(1)
2 E4,1(σ2)E5,2(σ2), S

(3)
2 = S

(2)
2 E5,1(σ3)E6,2(σ3), S

(4)
2 = S

(3)
2 E6,1(σ4)E7,2(σ4),

contain the elements 0, 0, 0, 0, a
(4)
4 , a

(4)
5 , a

(4)
6

1 at the locations of

0, a
(1)
1 , a

(1)
2 , a

(1)
3 , a

(1)
4 , a

(1)
5 ,a

(1)
6 of S

(1)
2 .

1The upper index, e.g. a
(4)

4
, specifies that the coefficients belong to the matrix S

(4)

2
.
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Then the permutation matrix P = [e3, e4, e5, e6, e7, e1, e2] ∈ R
7×7 applied to S

(4)
2 gives

S
(4)
2 P =































b0 | 0 0 0

b1 b0 | 0 0 0

b2 b1 b0 | 0 0 0

b3 b2 b1 b0 | 0 0 0

− − − − + − − −

0 b3 b2 b1 | b0 a
(4)
4 0

0 0 b3 b2 | b1 a
(4)
5 a

(4)
4

0 0 0 b3 | b2 a
(4)
6 a

(4)
5

0 0 0 0 | b3 0 a
(4)
6































=





L1,1 | 0

− + −
L2,1 | L2,2





where L2,2 = S2(g, f2) and f2(x) = a
(4)
4 x2+a

(4)
5 x+a

(4)
6 is the first nonzero polynomial

produced by Euclid’s algorithm if f2 6= 0. In this case the matrix L1,1 is square, lower

triangular and nonsingular.

The following four cases may happen:

1. f2 = 0, i.e. a
(4)
4 = a

(4)
5 = a

(4)
6 = 0. Then g divides f and the matrix S

(4)
2 P

without any block structure is lower triangular matrix having two last zero columns.

2. a
(4)
4 6= 0 and f2 divides g. Then elementary matri-

ces applied to L2,2 transform L2,2 to the matrix S
(4)
2,⋆ .

Hence, the matrices S
(4)
2 and S2 are rank deficient of

order 1. In this case n2 := deg(GCD(f, g)) = 2.

S
(4)
2,⋆ =











a
(4)
4 0 0

a
(4)
5 a

(4)
4 0

a
(4)
6 a

(4)
5 0

0 a
(4)
6 0











3. a
(4)
4 6= 0 and f2 does not divide g. Then elementary matrices applied to L2,2

transform L2,2 to the lower triangular matrix having linearly independent columns..

4. a
(4)
4 = 0 but f2 6= 0. Then the matrix S

(4)
2 (f, g) can be transformed into the

form

S̃
(4)
2 =































b0 | 0 0

b1 b0 | 0 0

b2 b1 b0 | 0 0

b3 b2 b1 b0 | 0 0

− − − − − + − −
0 b3 b2 b1 b0 | 0 0

0 0 b3 b2 b1 | a
(4)
5 0

0 0 0 b3 b2 | a
(4)
6 a

(4)
5

0 0 0 0 b3 | 0 a
(4)
6































and no other polynomials can be calculated in Euclid’s algorithm in the last two

cases. The matrices S
(4)
2 (f, g) and S2 have full column rank.
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In general, if the Sylvester subresultant Sj(f, g) has full column rank, we have to

go back to Sj−1(f, g), Sj−2(f, g), . . . as long as the rank deficient matrix appears. If

S1(f, g) = S(f, g) has full column rank, then f and g are coprime.

Just presented example is generalized in the following section. The results are origi-

nal.

2. Matrix formulation for the transformation of the Sylvester

subresultant matrix

Let us denote f0 := f and f1 := g, where f and g are defined in (1) and (2),

respectively. Denote n0 := m = deg(f0), n1 := n = deg(f1).
Let us assume that the matrices Sj(f0, f1), Sj(f1, f2), . . . can be constructed by

Euclid’s algorithm for an index j. According to our previous example, the following

theorem can be easily seen. Let us write shortly Sj := Sj(f0, f1).

Theorem 1. Let f0 and f1 be polynomials of degrees n0 and n1, respectively, n0 ≥
n1 ≥ 1. It is assumed that Euclid’s algorithm yields the polynomials f2, f3, . . . , fk,
fk+1 = 0 of degrees n2, n3, . . . , nk. Therefore fk = GCD(f0, f1). Denote d := nk and

fk(x) = v0x
d+v1x

d−1+ · · ·+vd−1x+vd. Consider an integer j ∈ {1, 2, . . . , n}. Then
the following statements hold:

1) There exists a nonsingular matrix Qj of order n0 + n1 − 2j + 2 such that the

matrix SjQj has the following block structure. We distinguish two cases:

a) If j ≤ d, then

SjQj =





L1,1 | 0

− + −
L2,1 | L2,2



 ,

where L1,1 is a square lower triangular matrix with non-zero diagonal elements

and L2,2 is a rectangular matrix with (nk−1 + nk − 2j + 2) columns if f2 6= 0.

Contrariwise if f2 = 0 then g divides f and the matrix SjQj is lower triangular

matrix having last n1 − j + 1 zero columns. In the following let f2 6= 0. Then

the matrix L2,2 has the following form:

(i) case when j ≤ d

L2,2 =





















v0 | 0 . 0

v1 v0 | 0 . 0

. v1 . | 0 . 0

vd . . v0 | 0 . 0

vd . v1 | 0 . 0

. . | 0 . 0

vd | 0 . 0





















︸ ︷︷ ︸

nk−1 − j + 1
︸ ︷︷ ︸

nk − j + 1

(ii) special case when j = d

L2,2 =





















v0 | 0

v1 v0 | 0

. v1 . | 0

vd . . v0 | 0

vd . v1 | 0

. . | 0

vd | 0





















︸ ︷︷ ︸

nk−1 − nk + 1
︸︷︷︸

1
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Moreover, the presented scheme of matrices (i) and (ii) shows that

rank(Sj) = rank(QjSj) = n0 + n1 − 2(j − 1)− (nk − j + 1)

= n0 + n1 − j − nk + 1

and the nonzero columns of the matrix L2,2 contain the coefficients of the poly-

nomial fk. In case j = d = nk, the matrix Sd is rank deficient of order 1.

b) If j > d, then SjQj is a lower triangular matrix with linearly independent

columns. Hence, SjQj and therefore Sj has full column rank.

2) If nk = 0, then the matrix S1(f0, f1) having full rank n0 + n1 is only considered,

fk = v0 6= 0 and L2,2 = v0Ink−1
.

3) The next equivalences follow from the statements formulated above:

rank(Sd(f0, f1)) = n0 + n1 − 2d+ 1 ⇔ deg (GCD(f0, f1)) = d,

rank(Sj(f0, f1)) < n0 + n1 − 2j + 1 ⇔ deg(GCD(f0, f1)) > j.

Just presented overview shows the relation between the rank(Sj) and the degree

of GCD(f0, f1). Hence if the polynomials f0 and f1 are known exactly and the

computations are performed symbolically, then the transformation of the Sylvester

subresultant matrix Sj(f0, f1), j ≤ d, to the lower triangular form with the resultant

matrix L2,2 yields the coefficients of the GCD(f0, f1).

3. Calculation of GCD

Consider the polynomials f and g in (1) and (2) of degrees m = deg(f0) and n =

deg(f1), and put f0 = f and f1 = g. Let h be the exact GCD(f0, f1) with d = deg(h).
There exist two polynomials w0 and w1 so that

fi = hwi for i = 0, 1, where deg(w0) = m− d, deg(w1) = n− d.

Hence h = f0/w0 = f1/w1 ⇒ f0w1 − f1w0 = 0. Using Cauchy matrices, we can

rewrite the last equality in the form

Cn−d+1(f0)~w1 − Cm−d+1(f1)~w0 = [Cn−d+1(f0), Cm−d+1(f1)]
︸ ︷︷ ︸

Sd

[

~w1

−~w0

]

= ~0, (3)

where the vectors of coefficients of the polynomials w1, w0 are denoted by ~w1 and ~w0.

The matrix Sd = [Cn−d+1, Cm−d+1] ∈ R
(m+n−d+1)×(m+n−2d+2) is rank deficient of or-

der 1. The solution of (3) is the right singular vector corresponding to σmin(Sd(f0, f1))
and can be computed by the Gauss-Newton iteration, see for example [2, 3, 8]. The

coefficients of h are calculated as the least square solution of the equation

Cd+1(w1)~h = ~f1 or Cd+1(w0)~h = ~f0.
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Figure 1: In the following graphs the smallest singular values of the Sylvester sub-

resultant matrices S9, S8, S7 and S6, left-hand side, and the singular values of S7,

right-hand side, are drawn.

Let us demonstrate the mentioned theory on the following polynomials

f0(x) = (x− 1.2)4(x+ 2)5(x− 0.5)4, f1(x) = (x− 1.4)2(x+ 2)3(x− 0.5)4 (4)

of degrees deg(f0) = 13 and deg(f1) = 9. Their GCD is the polynomial GCD(f0, f1) =
h(x) = (x+2)3(x−0.5)4 = x7+4x6+1.5x5−7.5x4−0.9375x3+6.375x2−3.25x+0.5
of degree deg(h) = d = 7. Theorem 1 says that S7 is the first rank deficient matrix

in the sequence S9, S8, S7. For illustration see Figure 1.

The matrix S7 is the first rank deficient matrix with the smallest singular value

7.1678−14
10 and the corresponding right singular vector

[−0.1090, 0.3051,−0.2135, 0.1090,−0.0872,−0.7147, 0.9204, 0.9790,−2.1086, 0.9037]T.

The LS solution of C8( ~w1)~h = ~f1 yields the coefficients of the GCD(f0, f1) =
~h = [1, 4, 1.5,−7, 5,−0.9375, 6.375,−3.25, 0.5]T . The LS solution of the system

C8( ~−w0)~h = ~f0 yields the same vector ~h = [1, 4, 1.5,−7, 5,−0.9375, 6.375,−3.25, 0.5]T .

4. Approximate greatest common divisor

It was assumed that the coefficients of polynomials are given exactly and the

calculations are performed symbolically. But the calculation of the GCD is unstable

in a computer environment and cannot be almost used. Moreover, numerical compu-

tation of the GCD is an ill-posed problem. Therefore the concept of an approximate

greatest common divisor (AGCD) was introduced [3, 6, 13, 14].

Definition. Let f and g be two polynomials of degrees m and n, respectively, and let

0 < θ << 1 be a positive number. The degree of an approximate greatest common

divisor with respect to θ is the maximum integer j ≤ min(m,n) for which there exist

polynomials δf and δg with max(‖δf‖, ‖δg‖) ≤ θ and deg(GCD(f + δf, g+ δg) = j.
The approximate greatest common divisor denoted by AGCD(f, g) is defined by

AGCD(f, g) = GCD(f + δf, g + δg).
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Algorithms for the calculation of δf and δg are well known. However they are out

of scope of this paper and cannot be analysed in this paper. Let us only mention

the Structured Total Least Norm (STLN) method (see, for example, [10, 5, 13]) for

the construction of a structured low rank approximation of the full rank Sylvester

matrix in the AGCD approach.

For demonstration, let us again consider the polynomials from Section 3 and let

us denote them by f̂ and ĝ. Their exact GCD is the polynomial

GCD(f̂ , ĝ) = x7 + 4x6 + 1.5x5 + 7.5x4 − 0.9375x3 + 6.375x2 − 3.25x+ 0.5.

Let f and g be inexact forms of f̂ and ĝ, i.e. the polynomials f̂ and ĝ with a noise

expressed by a signal-to-noise ratio equal to 106 added to their coefficients. The

polynomials that arise from the application of the STLN method are denoted by f̃
and g̃. The schema of this process is as follows.

{

f̂(x)
ĝ(x)

}

perturbation
−−−− →

{

f(x)
g(x)

}

STLN
−−−− →

{

f̃(x)
g̃(x)

}

The polynomials f and g are theoretically coprime and the procedure that follows

from Theorem 1 fails in the presence of greater noise. However, we can see from

the table below that the coefficients of GCD(f̂ , ĝ) and GCD(f̃ , g̃) of the polynomials

computed by STLN are almost identical.

GCD(f̂ , ĝ) GCD(f̃ , g̃)

x7 1 1

x6 4 3.999978
x5 1.5 1.499947
x4 −7.5 −7.500006
x3 −0.9375 −0.937463
x2 6.375 6.375001
x1 −3.25 −3.250011
x0 0.5 0.499999
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Milan Hanuš, mhanus@kma.zcu.cz

Katedra matematiky, Fakulta aplikovaných věd, Západočeská univerzita v Plzni
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Pavol Chocholatý, chocholaty@fmph.uniba.sk
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Vratislava Mošová, vratislava.mosova@mvso.cz
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