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Abstract

Simple modifications of the limited-memory BFGS method (L-BFGS) for large
scale unconstrained optimization are considered, which consist in corrections of the
used difference vectors (derived from the idea of conjugate directions), utilizing infor-
mation from the preceding iteration. For quadratic objective functions, the improve-
ment of convergence is the best one in some sense and all stored difference vectors
are conjugate for unit stepsizes. The algorithm is globally convergent for convex suffi-
ciently smooth functions. Numerical experiments indicate that the new method often
improves the L-BFGS method significantly.

1. Introduction

We propose some modifications of the L-BFGS method (see [5], [10]) for large
scale unconstrained minimization of the differentiable function f : RN → R. Simi-
larly as in the multi-step quasi-Newton methods (see e.g. [9]), we utilize information
from the preceding iteration. However, while the multi-step methods derive the cor-
rections of the difference vectors from various interpolation methods, our approach
is based on the idea of conjugate directions (see e.g. [4, 11]).

The L-BFGS method belongs to the variable metric (VM) or quasi-Newton line
search methods, see [4], [8]. They start with an initial point x0 ∈ RN and generate
iterations xk+1 ∈ RN by the process xk+1 = xk+tkdk, k ≥ 0, where dk is the direction
vector and tk > 0 is a stepsize, usually chosen in such a way that

fk+1 − fk ≤ ε1tkg
T
k dk, gTk+1dk ≥ ε2g

T
k dk, (1)

k ≥ 0, where 0 < ε1 < 1/2, ε1 < ε2 < 1, fk = f(xk), gk = ∇f(xk) and dk =
−Hkgk with a symmetric positive definite matrix Hk; usually H0 = I and Hk+1 is
obtained fromHk by a VM update to satisfy the quasi-Newton conditionHk+1yk = sk
(see [4, 8]), where sk = xk+1 − xk = tkdk and yk = gk+1 − gk, k ≥ 0.

Among VM methods, the BFGS method belongs to the most efficient; the update
formula can be written in the form (note that bk > 0 for gk 6= 0 by (1))

Hk+1 = (1/bk)sks
T
k + VkHkV

T
k , bk = sTkyk, Vk = I − (1/bk)sky

T
k ,
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k ≥ 0, see [4, 8, 11], on which the L-BFGS method – a limited-memory adaptation
of the BFGS method – is based. Instead of an N × N matrix Hk, only the last
m̃ + 1 couples {sj, yj}kj=k−m̃ are stored, where m̃ = min(k,m−1) and m ≥ 1 is
a given parameter. The direction vector is computed by the Strang recurrences,
see [10], and still satisfies dk+1 = −Hk+1gk+1, k ≥ 0, but matrix Hk+1 is not formed
explicitly.

Here we will investigate such corrections of vectors sk, yk which provide conjugacy
of consecutive corrected vectors. Thus we will define corrected quantities s̄k, ȳk, b̄k
and V̄k, k ≥ 0, by s̄0 = s0, ȳ0 = y0, b̄0 = b0, V̄0 = V0 and

s̄k = sk − αks̄k−1, ȳk = yk − βkȳk−1, b̄k = s̄Tk ȳk, V̄k = I − (1/b̄k)s̄kȳ
T
k , (2)

k > 0, with such αk, βk ∈ R that b̄k > 0. Correspondingly, we will use a direction
vector dk = −H̄kgk, k ≥ 0, where H̄0 = I and symmetric positive definite matrix

H̄k+1 = (sTkyk/|yk|2) V̄k · · · V̄k−m̃ V̄ T
k−m̃ · · · V̄ T

k

+ (1/b̄k−m̃) V̄k · · · V̄k−m̃+1 s̄k−m̃s̄
T
k−m̃ V̄ T

k−m̃+1 · · · V̄ T
k (3)

+ · · · + (1/b̄k−1) V̄k s̄k−1s̄
T
k−1 V̄

T
k + (1/b̄k) s̄ks̄

T
k , k ≥ 0,

satisfies the quasi-Newton condition H̄k+1ȳk = s̄k and is obtained by the repeated
BFGS update of (sTkyk/|yk|2)I with corrected vectors. We denote B̄k = H̄−1

k , k ≥ 0.
In Section 2 we investigate the standard BFGS update with corrected vectors

H̄+ = (1/b̄)s̄s̄T + V̄ H̄V̄ T , b̄ = s̄T ȳ, V̄ = I − (1/b̄)s̄ȳT , (4)

(in the simplified form) of any symmetric positive definite matrix H̄ with corrected
difference vectors s̄ = s−αs̄−, ȳ = y−βȳ− and discuss the choice of parameters α, β.
In Section 3 we focus on quadratic functions and show optimality of our choice of
parameters and conjugacy and other properties for unit stepsizes. Application to
limited-memory methods and the corresponding algorithm are described in Section 4,
global convergence of the algorithm is established in Section 5 and numerical results
are reported in Section 6. Details and proofs of assertions can be found in [13].

2. The BFGS update with corrected vectors

The following lemma enables us to distinguish roles of products s̄T ȳ−, s̄
T
−
ȳ and

shows that, under some assumptions, the conjugacy of difference vectors s̄, s̄− with
respect to matrices B̄ = H̄−1, B̄+ = H̄−1

+ is equivalent to the satisfaction of condition
H̄+ȳ− = s̄−. Note that condition H̄ȳ− = s̄− represents the quasi-Newton condition
from the preceding update, which is satisfied for m > 1, see [13].

Lemma 1. Let H̄ be any symmetric positive definite matrix with H̄ȳ− = s̄−, ma-
trix H̄+ be given by (4) with b̄ > 0 and ∆1 = (H̄+ȳ−− s̄−)

T B̄+(H̄+ȳ−− s̄−). Then

∆1 =
[

(s̄T
−
ȳ−s̄Tȳ−)

2 + ω(s̄Tȳ−)
2
]

/b̄ , (5)
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where ω ≥ 0, with ω = 0 only in case of dependency of vectors s̄, H̄ȳ. If vectors s̄, H̄ȳ
are linearly independent then H̄+ satisfies H̄+ȳ− = s̄− if and only if vectors s̄, s̄−
are conjugate with respect to matrices B̄, B̄+.

Since value ω could be large, we can see from relation (5) that mainly value s̄Tȳ−
should be close to zero, to have ∆1 small. Therefore we prefer the choice α = sTȳ−/b̄−,
for which s̄Tȳ− = 0. Similarly, the basic choice of β is βZ = s̄T

−
y/b̄−, which yields

s̄T
−
ȳ = 0 (thus H̄+ȳ−= s̄− by ∆1 = 0) and has some interesting properties.

Theorem 2. Let H̄ be any symmetric positive definite matrix with H̄ȳ− = s̄− and
matrix H̄+ be given by (4) with b̄ > 0. If α = sTȳ−/b̄− then s̄Tȳ− = 0, b̄ = b−α s̄T

−
y

and both value ā and the condition number of matrix H̄1/2B̄+H̄
1/2 as functions of β

are minimized by the choice β= s̄T
−
y/b̄−.

Satisfaction of condition H̄+ȳ− = s̄− also guarantees that matrix H̄+ is closer
to H̄ than to H̄− in some sense, as we can see from Theorem 3 with H̄−, H̄ , s̄−, ȳ−
instead of H̄ , H̄+, s̄, ȳ and G̃ = H̄−1

+ (‖.‖F denotes the Frobenius matrix norm).

Theorem 3. Let H̄ be any symmetric positive definite matrix, matrix H̄+ be given
by (4) with b̄ > 0, G̃ be any symmetric positive definite matrix satisfying G̃s̄ = ȳ,
W+= G̃1/2H̄+G̃

1/2 and W = G̃1/2H̄G̃1/2. Then

‖I −W+‖2F − ‖I −W‖2F = −‖W+ −W‖2F ≤ −
(

ā/b̄− 1
)2
. (6)

The following lemma indicates that β should also be near to α, to have |H̄+y−s|
small. E.g. the choice β = ±

√
βZα has interesting properties.

Lemma 4. Let H̄ be any symmetric positive definite matrix with H̄ȳ− = s̄− and
matrix H̄+ be given by (4) with b̄ > 0. If α = sTȳ−/b̄− then ∆1 = (s̄T

−
ȳ)2/b̄ and

(H̄+y − s)T B̄+(H̄+y − s) = b̄−[(β − α)2 + (β − βZ)
2(sTȳ−)

2/(b̄ b̄−)]. (7)

Moreover, if β2=sTȳ− s̄T
−
y/b̄2

−
, then yT (H̄+y − s) = 0.

3. Results for quadratic functions

In this section we suppose that f is a quadratic function with a symmetric positive
definite matrix G and that β=α, which is a natural choice, if we want to have ȳ=Gs̄,
similarly as for non-corrected vectors. Here we consider only the G-conjugacy of
vectors.

The conjugacy of s̄, s̄− can be achieved by the choice α = sTȳ−/b̄− = s̄T
−
y/b̄−

by (2). The following theorem shows that this choice is the best in some sense.

Theorem 5. Let α̂ = sTȳ−/b̄− = s̄T
−
y/b̄−, H̄ be any symmetric positive definite

matrix with H̄ȳ− = s̄−, H̄+ be given by (4) with β = α and let f be a quadratic
function f(x) = 1

2
(x − x∗)TG(x − x∗), x∗ ∈ RN , with a symmetric positive definite

matrix G. If vectors s, s̄− are linearly independent, then b̄ > 0 and the choice α= α̂
implies H̄+y=s and minimizes the values b̄, ‖G1/2H̄+G

1/2 − I‖F as functions of α.
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The L-BFGS method with exact line searches generates conjugate directions vec-
tors and preserves m̃ previous quasi-Newton conditions, see e.g. [10]. Similarly for
update (4) with unit stepsizes we get that all stored vectors s̄k are conjugate and m̃
previous quasi-Newton conditions are preserved, if every stepsize is unit.

Theorem 6. Let x0 ∈ RN , x∗ ∈ RN , k̄ > 0, m ≥ 1, f be the quadratic function
f(x) = 1

2
(x−x∗)TG(x−x∗) with a symmetric positive definite matrix G, and let for

0 ≤ k ≤ k̄ iterations xk+1 = xk + sk be generated by sk = −tkH̄kgk, gk = ∇f(xk),
tk > 0, with matrices H̄k defined in the following way: H̄0 = I and matrices H̄k+1,
0 ≤ k < k̄, are given by (3), where m̃ = min(k,m−1), yk = gk+1− gk, and quantities
s̄j, ȳj, V̄j and b̄j, j ≥ 0, are formally defined by s̄0 = s0, ȳ0 = y0, s̄j+1 = sj+1−αj+1s̄j,
ȳj+1 = yj+1 − αj+1ȳj, αj+1= sTj+1ȳj/b̄j, V̄j = I − (1/b̄j)s̄j ȳ

T
j , b̄j = s̄Tj ȳj.

If every generated vector sk is linearly independent of s̄k−1, 0 < k ≤ k̄, then the
method is well defined. Moreover, if tk+1 = 1 for some k, 0 ≤ k < k̄, it holds

H̄k+iȳk = s̄k, s̄TkGs̄k+i = 0, s̄Tk gk+i+1 = 0, 1 ≤ i ≤ min(m̃+1, k̄−k). (8)

4. Application to limited-memory methods

From the theory in Section 3 we can deduce that we should use the corrected
difference vectors whenever objective function is close to a quadratic function. As
measure of deviation from a quadratic function at points xk−1, xk, xk+1, e.g. value
|sTk yk−1 − sTk−1yk| could serve (zero for quadratic functions), k > 0; we use value
|sTk ȳk−1− s̄Tk−1yk| = b̄k−1|αk−βk|, which gives very similar results. We do not correct
if it is greater than b̄2k−1/bk, if (s

T
k ȳk−1).(s̄

T
k−1yk) ≤ 0 or if b̄k ≤ 10−6bk.

Value βk = sgn(αk)
√

θk/b̄k−1, corresponding to the choice in Lemma 4, appears
to be suitable if value b̄k is sufficiently large with respect to bk (we use condition

b̄k > 10−2bk). This choice satisfies |βk| <
√

bk/b̄k−1; it is a reason why we use this

value βk also in case that |s̄Tk−1yk/b̄k−1| > 2
√

bk/b̄k−1 to prove global convergence.

Global convergence can be easily established (in a similar way as for the L-BFGS
method, see [5]), if |s̄k|/|sk| ≤ ∆ and |ȳk|/|yk| ≤ ∆, k > 0, where ∆ > 1 is a constant.
If this condition is not satisfied, it suffices to replace the oldest saved vectors s̄k−m̃,
ȳk−m̃ e.g. by sk, yk. Note that in our numerical experiments with N = 1000, value
|ȳk|/|yk| was rarely greater than 10 and value |s̄k|/|sk| greater than 50.

We now state the method in details. For simplicity, we omit stopping criteria.

Algorithm 4.1

Data: The number m ≥ 1 of VM updates per iteration, line search parameters ε1,
ε2, 0<ε1<1/2, ε1<ε2<1, and correction parameter ∆ > 1.

Step 0: Initiation. Choose starting point x0 ∈ RN , define starting matrix H̄0
0 = I

and direction vector d0 = −∇f(x0) and initiate iteration counter k to zero.

Step 1: Line search. Compute xk+1 = xk+tkdk, where tk satisfies (1), sk = xk+1−xk,
gk+1=∇f(xk+1), yk=gk+1−gk and bk=sTkyk. If k=0 set s̄k=sk, ȳk=yk and
go to Step 4.
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Step 2: Correction preparation. Set αk = sTk ȳk−1/b̄k−1, βk = s̄Tk−1yk/b̄k−1. If αkβk ≤ 0
or b̄k ≤ 10−6bk or |αk − βk| ≥ b̄k−1/bk, set αk = βk = 0 and go to Step 3. If

|βk| > 2
√

bk/b̄k−1 or b̄k > 10−2bk, replace βk by βk

√

αk/βk.

Step 3: Correction. Set s̄k = sk − αks̄k−1, ȳk = yk − βkȳk−1.

Step 4: Update definition. Set m̃ = min(k,m−1), b̄k = s̄Tkȳk and define V̄k = I−
(1/b̄k)s̄kȳ

T
k . If |s̄k−m̃|/|sk−m̃| > ∆ or |ȳk−m̃|/|yk−m̃| > ∆, set s̄k−m̃ = sk,

ȳk−m̃ = yk and b̄k−m̃ = bk. Define H̄k+1 by (3).

Step 5: Direction vector. Compute dk+1 = −H̄k+1gk+1 by the Strang recurrences, set
k := k + 1 and go to Step 1.

5. Global convergence

Assumption 7. The objective function f : RN → R is bounded from below and
uniformly convex with bounded second-order derivatives (i.e. 0 < G ≤ λ(G(x)) ≤
λ(G(x)) ≤ G < ∞, x ∈ RN , where λ(G(x)) and λ(G(x)) are the lowest and the
greatest eigenvalues of the Hessian matrix G(x)).

Theorem 8. If objective function f satisfies Assumption 7, Algorithm4.1 generates
a sequence {gk} that either satisfies lim

k→∞

|gk|=0 or terminates with gk=0 for some k.

6. Numerical results

In this section, we demonstrate the influence of vector corrections on the number
of evaluations (NFE) and computational time, using the following collections of test
problems: Test 11 from [7] (55 chosen problems), which are modified problems from
CUTE collection [2] with N ranging from 1000 to 5000, test from [1], termed Test 12
here, 73 problems, N= 5000, Test 25 from [6] (68 chosen problems), N=10000.

Table 1 contains results for the following limited-memory methods: L-BFGS,
see [10], method from [12] (Algorithm3.1 with σ = 0.4) and new Algorithm4.1. We
have used m = 5, ∆ = 100, the final precision ‖g(x⋆)‖∞ ≤ 10−6, ε1 = 10−4 and
ε2 = 0.8.

Test 11 Test 12 Test 25
Method NFE Time NFE Time NFE Time
L-BFGS 80539 32.50 43648 46.17 462104 519.40

Alg. 3.1 in [12] 80328 34.52 43182 56.67 512880 649.15
Algorithm4.1 64395 30.20 34472 37.57 296321 381.08

Table 1. Comparison of the selected methods.

For a better demonstration of both the efficiency and the reliability, we compare
selected optimization methods for Test 25 by using performance profiles introduced
in [3]. The value of πM(τ) at τ = 0 gives the percentage of test problems for which
the method M is the best and the value for τ large enough is the percentage of
test problems that method M can solve. The relative efficiency and reliability of
each method can be directly seen from the performance profiles: the higher is the
particular curve the better is the corresponding method.
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Figure 1: (Test 25, m = 5, 68 problems, N=10 000)
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