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Žitná 25, Prague, Czech Republic

sistek@math.cas.cz

Abstract

Different choices of the averaging operator within the BDDC method are compared
on a series of 2D experiments. Subdomains with irregular interface and with jumps
in material coefficients are included into the study. Two new approaches are studied
along three standard choices. No approach is shown to be universally superior to
others, and the resulting recommendation is that an actual method should be chosen
based on properties of the problem.

1. Introduction

In many domain decomposition methods, an important role is played by the
operator of averaging of a discontinuous function at the interface between adjacent
subdomains. Two standard approaches commonly used in literature are: (i) arith-
metic average, based simply on counting number of subdomains at an interface
unknown, and (ii) weighted average, with weights derived from diagonal stiffness
of subdomain Schur complements with respect to the interface. Its simplification
presents approximation of the diagonal of the Schur complement by the diagonal of
the original matrix, also known as the stiffness scaling [3]. The applicability of the
so called ρ-scaling (see e.g. [3] or [4] for theoretical analysis) is limited to the case of
material coefficients constant on each subdomain, which is not preserved in our ex-
amples. It also relies on knowledge of coefficients often not available in the solver. In
the case of homogeneous material, it simplifies to arithmetic average. Consequently,
it is not analyzed separately in this study.

In this paper, we study performance of these standard choices on a series of two-
dimensional numerical experiments with the Poisson equation. These were selected
to test the performance on regular and irregular subdomains, and in presence of
jumps in material coefficients with different alignment with respect to interface. The
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Balancing Domain Decomposition by Constrains (BDDC) method [2] is used for
this study. In addition to the standard approaches, two new methods are included –
averaging based on a unit jump on the interface described in [1], and a new approach
based on a unit load applied on boundary of a subdomain. These approaches are
shown to be competitive or even preferable in certain situations.

2. Reduction of the problem to the interface

Consider a boundary value problem with a self-adjoint operator defined on do-
main Ω ⊂ R

2 or R
3. If we discretize the problem by means of the standard finite

element method (FEM), we arrive at the solution of a system of linear equations in
the matrix form

Ku = f , (1)

where K is a large, sparse, symmetric positive definite (SPD) matrix and f is a vector
of the right-hand side.

Let us decompose domain Ω intoN non-overlapping subdomains Ωi, i = 1, . . . , N .
Unknowns common to at least two subdomains are called interface unknowns and
the union of all interface unknowns form the interface. Remaining unknowns belong
to subdomain interiors.

The first step used in many domain decomposition methods including BDDC is
the reduction of the problem to the interface. Without loss of generality, suppose that
unknowns are ordered so that interior unknowns form the first part and the interface

unknowns form the second part of the solution vector, i.e. u =
[
uo û

]T
, where

uo stands for all interior unknowns and û for unknowns at the interface. System (1)
can now be formally rewritten to the block form

[
Koo Kor

Kro Krr

] [
uo

û

]
=

[
fo

f̂

]
. (2)

The hat symbol (̂) is used to denote global interface quantities. If we suppose the
interior unknowns are ordered subdomain after subdomain, then the submatrix Koo

is block diagonal with each diagonal block corresponding to one subdomain.
After eliminating all the interior unknowns from (2), we arrive at the Schur

complement problem for the interface unknowns

Ŝ û = ĝ, (3)

where Ŝ = Krr −KroK
−1
oo Kor is the Schur complement of (2) with respect to inter-

face and ĝ = f̂ −KroK
−1
oo fo is sometimes called condensed right-hand side. Interior

unknowns uo are determined by interface unknowns û via the system of equations
Koouo = fo − Korû, which represents N independent subdomain problems with
Dirichlet boundary condition prescribed on the interface and can be solved in par-
allel. The main objective represents the solution of problem (3), which is solved by
the preconditioned conjugate gradient method (PCG).
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3. Primal DD methods and BDDC

Primal DD methods can be viewed as preconditioners for problem (3), when it is
solved by the PCG method. In every iteration of the PCG method, a preconditioned
residual Mr̂ is computed, where r̂ is the residual. The action of M is realized by one
step of the DD method.

The main idea of the primal DD substructuring methods of Neumann-Neumann
type can be expressed as splitting the given residual of the PCG method to sub-
domains, solving subdomain problems and projecting the result back to the global
domain. The primal preconditioner can be written as

M = ES−1ET , (4)

where operator ET represents splitting of the residual to subdomains, S−1 stands for
solution of subdomain problems, and E represents projection of subdomain solutions
back to the global problem by some averaging [5]. In the case some subdomains are
‘floating’, i.e. do not touch a part of boundary with Dirichlet boundary conditions,
S is only positive semidefinite, and a generalized inverse S+ may be needed in (4).

The condition number κ of the preconditioned operator MŜ is bounded by

κ ≤ ||RE||2S , (5)

where operator R splits the global interface into subdomains and the energetic norm
on the right-hand side is defined by the scalar product as ||u||2S = 〈Su, u〉. The
relationship (5) was proved in [5] assuming that ER = I, which means that if the
problem is split into subdomains and then projected back to the whole domain, the
original problem is obtained.

If we used independent subdomain problems only (no continuity conditions across
the interface), the operator S would be expressed by a block diagonal matrix S with
diagonal blocks representing local Schur complements on subdomains. Relationship
between global and local problems can be expressed in matrix form as Ŝ = RTSR.

The main idea of the BDDC method ([2]) is to introduce a global coarse problem

in order to achieve better preconditioning and to fix ‘floating subdomains’ by making
their local Schur complements invertible. The matrix S is then positive definite, but it
is not block diagonal any more, R now represents splitting of the global interface into
subdomains (outside of the coarse unknowns), and ET distributes residual among
neighbouring subdomains only in those interface unknowns which are not coarse.
Thus in BDDC, only part of the global residual is split into subdomains; residual at
the coarse unknowns is left undivided – it is processed by the global coarse problem.

4. Choice of the averaging operator E

Three standard choices of the averaging operator E recommended already in [2]
are (i) the arithmetic average, or weighted average with weights at interface nodes
given (ii) by the ratio of the corresponding diagonal entries of the local and global
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Schur complement, or (iii) by the ratio of the corresponding diagonal entries of the
local and global system matrix K. These choices are denoted here as aa (arithmetic
average), ds (d iagonal of Schur complement) and dk (d iagonal of K), respectively.
Method dk can be regarded as an approximation of method ds, if Schur complements
are not computed explicitly.

We try to improve convergence of the BDDC method by choosing some more
efficient weights. One of the proposed methods is to choose operator E so that it
approximately minimizes the energy norm of the projection RE from estimate (5) for
some suitable test vectors representing jumps across the interface. The method, de-
scribed in more detail in [1], is denoted here as uj (unit jumps). Here we numerically
test just one choice of the test vectors: for every common face of two subdomains,
one (local) test vector consisting of ones in the nodes belonging to the face and zeros
elsewhere was chosen, corresponding to unit jump. Such choice results in the same
weight for every node at the whole face. This, in a sense, makes this method similar
to arithmetic average, where also just one weight is used for every node at the face
(equal to 0.5).

The second proposed method, denoted as ul (unit loads), tries to exploit infor-
mation of different values of local solution at corresponding interface nodes caused
by constant (unit) load at the local interface.

Computation of the weights at interface nodes

For the sake of clarity, formulas are presented for the 2D case, where an interface
node is either coarse (so there is no division into subdomains), or it belongs to
a face (i.e. to exactly two adjacent subdomains). We also assume one degree of
freedom per node, so that numbering of nodes and degrees of freedom coincide. It is
straightforward to generalize these methods for 3D cases and more degrees of freedom
at a node.

Notation for interface nodes:
j – number of the node in numbering with regard to interface
i – global number of the j-th node on interface
wm

j – weight at the j-th node at the interface corresponding to the m-th subdomain

Formulas for individual methods:

aa : wm
j = 1

2

ds : wm
j =

smpp
sjj

dk : wm
j =

kmqq
kii

uj : wm
j = d

T
S
m
d

dT Ŝd

ul : wm
j =

v
m(j)

vm(j)+vn(j)

where:
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sjj – diagonal entry of the global Schur complement Ŝ

smpp – corresponding diagonal entry of the local Schur complement for the m-th sub-
domain; p is a local number (at the interface of the m-th subdomain) of the j-th
node at the (global) interface

kii – diagonal entry of the (global) system matrix K

km
qq – corresponding diagonal entry of the local matrix for the m-th subdomain; q is

a local number (at the m-th subdomain) of the i-th node (in global numbering)

d – test vector equal to ones at the face which the j-th node belongs to and zeros
otherwise (representing jump at that face)

Sm – local Schur complement for the m-th subdomain

vm, vn – vectors of solution of the local (subdomain) Schur complement problems
with zero values at coarse nodes and the right-hand side equal to one at every inter-
face node that is not coarse, at the m-th and n-th subdomain respectively, where
the n-th and m-th subdomain have common face which the j-th node belongs to.

5. Numerical results

The 2D problem of stationary heat conduction (Poisson equation) on a rectangu-
lar domain was used for testing. It was discretized by 59 x 59 bilinear finite elements
of the same size and shape.

We compared two different divisions into subdomains: rectangular subdomains
(Figure 1 left), as the usual choice for rectangular domain, and irregular subdomains
(Figure 1 right), typical for domains with irregular shape or when some tool for
automatic division into subdomains is used. For the coarse space, just the cross-
points were used. Both homogeneous and nonhomogeneous materials were tested.
The nonhomogenity was given by a 1:100 jump in conductivity. Nine different space
arrangement of the jump was used, denoted as problems p1–p9 and depicted in
Figure 2 (white color represents the conductivity of 1 and black color represents the
conductivity of 100).

Five different methods of weights for averaging between the subdomains in the
BDDC method were compared, three standard ones (aa, ds and dk) and two new
(uj, ul), all described in Section 4.

Number of PCG iterations for different methods are summarised for rectangular
subdomains in Table 1 and for irregular ones in Table 2. The problem p0 represents
problem with constant conductivity on the whole domain, the problems p1–p9 are
problems with different locations of jumps in conductivity depicted in Figure 2. As
a convergence criterion, norm of the residual less than 10−6 was used.

Condition numbers of the preconditioned systems are presented in Tables 3 and 4,
where the row k0 is added with the condition number of Schur complement system
without preconditioning. Condition numbers were estimated using ratio of the largest
and the smallest eigenvalue computed by Matlab function eig.
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p0 p1 p2 p3 p4 p5 p6 p7 p8 p9
aa 14 45 14 48 22 22 43 42 46 42
uj 14 6 14 60 21 23 49 37 49 29
ds 14 6 14 28 23 22 30 26 59 16
dk 14 6 14 28 22 22 31 25 59 16
ul 14 6 15 39 23 23 38 35 60 16

Table 1: Number of iterations of PCG, rectangular subdomains.

p0 p1 p2 p3 p4 p5 p6 p7 p8 p9
aa 13 51 46 65 35 52 58 54 68 83
uj 14 42 41 77 49 72 55 43 70 14
ds 19 23 28 37 37 55 30 33 50 16
dk 20 23 29 37 37 57 32 34 56 16
ul 15 21 24 54 46 64 47 34 64 15

Table 2: Number of iterations of PCG, irregular subdomains.

p0 p1 p2 p3 p4 p5 p6 p7 p8 p9
k0 5e2 1e3 3e3 2e3 4e4 2e4 2e4 3e4 4e3 3e3
aa 3.71 255 3.65 83 20 33 59 61 69 83
uj 3.72 1.15 3.22 73 18 30 80 50 39 19
ds 3.71 1.15 3.61 104 20 33 50 51 153 7
dk 3.71 1.15 3.65 105 20 33 53 55 160 7
ul 3.94 1.15 3.83 46 21 33 55 58 40 8

Table 3: Condition number of the preconditioned system, rectangular subdomains.

p0 p1 p2 p3 p4 p5 p6 p7 p8 p9
k0 6e2 4e3 3e3 2e3 5e4 3e4 3e4 4e4 6e3 4e3
aa 3.26 73 62 72 50 57 82 82 77 136
uj 3.31 91 49 166 147 157 90 131 116 4
ds 8.23 22 148 79 106 172 128 123 94 6
dk 8.79 22 161 80 114 188 141 132 113 7
ul 3.49 19 34 71 109 98 99 135 82 4

Table 4: Condition number of the preconditioned system, irregular subdomains.
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Figure 1: Division into rectangular (left) and irregular (right) subdomains.
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Figure 2: Different nonhomogeneous material properties for problems p1–p9 (the first
row p1, p2, p3, the second row p4, p5, p6, the last row p7, p8, p9 ).
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Figure 3: Comparison of the first 150 eigenvalues of MŜ for methods dk (‘◦’, dotted
line), and ul (‘×’, solid line), problem p3, regular subdomains.
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Figure 4: Comparison of the first 150 eigenvalues of MŜ for methods dk (‘◦’, dotted
line), and ul (‘×’, solid line), problem p3, irregular subdomains.
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6. Conclusions

Our numerical results lead to several observations:

• Arithmetic average (method aa) is surprisingly robust even if jumps in coeffi-
cients of the equation occur, as long as the jumps do not exactly coincide with
the interface (for instance see problem p2, where the jumps are shifted only
one row of elements from the interface).

• Weights computed as the ratio of the corresponding diagonal entries of local
and global Schur complements can be very successfully approximated using the
original system matrix K instead of the Schur complements.

• For irregular shape of interface without jumps in coefficients (problem p0 ),
using either ds or dk method instead of arithmetic averages (aa) can lead to
worse convergence.

• Method ul seems to give promising results: it is usually better than arithmetic
average, often it is comparable or better than ds or dk, and it does not seem
to have difficulties with irregular shape of interface. However in some cases it
leads to worse convergence than all of the standard methods.

• Both proposed methods, uj and ul, lead very often to lower condition number of
the preconditioned system than all standard methods, aa, ds and dk. However,
they often give worse convergence results. The reason for this seems to be
the distribution of eigenvalues, as illustrated for problem p3 with rectangular
and irregular subdomains in Figures 3 and 4, respectively. For both cases, the
first 150 eigenvalues for methods dk (circles) and ul (crosslines) are compared.
For the first few largest eigenvalues, the values for the dk method are larger
than the values for the ul method, which leads to larger condition number (the
smallest eigenvalue is allways equal to one). However, following values for the
dk method quickly drop down and cluster around 1, and they are much lower
than the values for the ul method. As is well known, clustering of eigenvalues
is another important aspect influencing the rate of convergence of PCG.

For equation without jumps in coefficients, the method of choice seems to be the
arithmetic averaging. It can lead to very good convergence even if there are jumps
in coefficients, except the case where jumps exactly coincide with the interface or
some part of it.

If there are jumps in coefficients, the best choice is usually choosing weights as
the ratio of corresponding diagonal entries of local and global Schur complements
(method ds). As these numbers typically are not in hand, a very good substitute is
using diagonal entries of local and global original system matrices (method dk).

Interesting results are obtained by the method ul, which deserves further investi-
gation. Method uj does not lead to better convergence than the standard methods.
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