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Abstract

In our contribution, we study different Riesz wavelet bases in Sobolev spaces based

on cubic splines satisfying homogeneous Dirichlet boundary conditions of the second

order. These bases are consequently applied to the numerical solution of the bihar-

monic problem and their quantitative properties are compared.

1. Introduction

Wavelets are an established tool for the numerical solution of operator equations.
One of advantages of wavelet methods consists in the existence of a diagonal precon-
ditioner. This preconditioner is optimal in the sense that the condition number of
the preconditioned stiffness matrix does not depend on the size of the matrix. Fur-
thermore, a well-known compression property of wavelets enables efficient adaptive
solving of operator equations.

In numerical simulations, spline-wavelet bases are of special interest, because they
are known in a closed form, they are relatively smooth and they have a small support
in comparison with other wavelet bases, e.g. orthonormal wavelet bases. For the nu-
merical treatment of operator equations wavelet bases defined on bounded domain
are needed. They are usually derived from wavelet bases on the interval. Recently,
several constructions of cubic spline-wavelet bases on the interval adapted to the
second order homogeneous Dirichlet boundary conditions were proposed [1, 3, 9, 10].
The bases in [4, 10] have local dual basis functions, which is important in some
applications, such as solving nonlinear equations, but for solving partial differential
equations the locality of duals is not necessary. Therefore in a construction in [8], the
locality of duals is not required. The resulting basis has superb quantitative proper-
ties, but wavelets have no vanishing moments. In [5], we also gave up the locality of
duals and we designed a cubic spline-wavelet basis with vanishing wavelet moments
adapted to homogeneous Dirichlet conditions for the biharmonic problem. In this
contribution, we show that our basis have similar excellent quantitative properties as
basis from [8] and due to vanishing moments it can be used also in adaptive wavelet
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methods. In [5], a proof that this basis is a Riesz basis of the space Hs
0 (0, 1) for

1.5 < s < 2.5 is presented and properties of the projectors associated with this basis
are derived.

2. Construction of wavelet basis

We consider the domain Ω ⊂ R
d and the Sobolev Space H2

0 (Ω) with the standard
H2

0 (Ω)–norm denoted by ‖·‖H2

0
(Ω) and the H2

0 (Ω)–seminorm denoted by |·|H2

0
(Ω). Let

J be some index set and let each index λ ∈ J take the form λ = (j, k), where
|λ| := j ∈ Z is a scale or a level. Let

l2 (J ) :=

{

v : J → R,
∑

λ∈J

|vλ|
2 <∞

}

, ‖v‖l2(J ) :=

(

∑

λ∈J

|vλ|
2

)1/2

. (1)

A family Ψ := {ψλ, λ ∈ J } is called a wavelet basis of H2
0 (Ω), if

i) Ψ is a Riesz basis for H2
0 (Ω), i.e. the closure of the span of Ψ is H2

0 (Ω) and
there exist constants c, C ∈ (0,∞) such that

c ‖b‖l2(J ) ≤

∥

∥

∥

∥

∥

∑

λ∈J

bλψλ

∥

∥

∥

∥

∥

H2

0
(Ω)

≤ C ‖b‖l2(J ) , b := {bλ}λ∈J ∈ l2 (J ) . (2)

ii) The functions are local in the sense that diam (Ωλ) ≤ C2−|λ| for all λ ∈ J ,
where Ωλ is the support of ψλ, and at a given level j the supports of only
finitely many wavelets overlap at any point x ∈ Ω.

A wavelet basis is usually formed by two types of functions: scaling functions and
wavelets. We focus on a wavelet basis recently constructed in [5] and we briefly
review the construction. Let φ be a cubic B-spline defined on knots [0, 1, 2, 3, 4] and
φb be a cubic B-spline defined on knots [0, 0, 1, 2, 3]. The graphs of the functions φ
and φb are displayed in Figure 1. For j ∈ N and x ∈ [0, 1] we set

φj,k (x) = 2j/2φ(2jx− k), k = 2, . . . 2j − 2, (3)

φj,1 (x) = 2j/2φb(2
jx), φj,2j−1 (x) = 2j/2φb(2

j(1− x)).

We define a wavelet ψ as

ψ(x) = −
1

2
φ(2x) + φ(2x− 1)−

1

2
φ(2x− 2). (4)

Then ψ has two vanishing wavelet moments, i.e.

∫ ∞

−∞

xkψ(x)dx = 0, k = 0, 1. (5)
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Figure 1: Scaling functions φ and φb and wavelets ψ and ψb.

There are several choices for the definition of boundary wavelet. We choose a wavelet
with the shortest possible support and the first wavelet moment vanishing:

ψb(x) = φb(2x)− 0.45φ(2x). (6)

The graphs of the functions ψ and ψb are displayed in Figure 1. The inner wavelets
correspond to the construction of a wavelet basis for the space L2 (R) in [7].

For j ∈ N and x ∈ [0, 1] we define

ψj,k(x) = 2j/2ψ(2jx− k + 2), k = 2, ..., 2j − 1, (7)

ψj,1(x) = 2j/2ψb(2
jx), ψj,2j(x) = 2j/2ψb(2

j(1− x)).

We denote

Φj =
{

φj,k/ |φj,k|H2

0
(0,1) , k = 1, . . . , 2j − 1

}

, (8)

Ψj =
{

ψj,k/ |ψj,k|H2

0
(0,1) , k = 1, . . . , 2j

}

.

Then the sets

Ψs = Φ2 ∪

1+s
⋃

j=2

Ψj and Ψ = Φ2 ∪

∞
⋃

j=2

Ψj (9)

are a multi-scale wavelet basis and a wavelet basis of the space H2
0 (0, 1), respectively.

We use u⊗ v to denote the tensor product of functions u and v, i.e. u⊗ v (x1, x2) =
u (x1) v (x2). We set

Fj =
{

φj,k ⊗ φj,l / |φj,k ⊗ φj,l|H2

0
(Ω) , k, l = 1, . . . , 2j − 1

}

G1
j =

{

φj,k ⊗ ψj,l / |φj,k ⊗ ψj,l|H2

0
(Ω) , k = 1, . . . , 2j − 1, l = 1, . . . 2j

}

G2
j =

{

ψj,k ⊗ φj,l / |ψj,k ⊗ φj,l|H2

0
(Ω) , k = 1, . . . , 2j, l = 1, . . . 2j − 1

}

G3
j =

{

ψj,k ⊗ ψj,l / |ψj,k ⊗ ψj,l|H2

0
(Ω) , k, l = 1, . . . , 2j

}
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where Ω = [0, 1]2. A wavelet basis and a multi-scale wavelet basis of the space H2
0 (Ω)

are defined as

Ψ2D
s = F2 ∪

1+s
⋃

j=2

(

G1
j ∪G

2
j ∪G

3
j

)

, Ψ2D = F2 ∪
∞
⋃

j=2

(

G1
j ∪G

2
j ∪G

3
j

)

. (10)

3. Condition numbers of stiffness matrices

In this section, we compare the condition numbers of the stiffness matrices for
the biharmonic problem in two dimensions for different wavelet bases. We consider
the biharmonic equation

∆2u = f on Ω = (0, 1)d , u =
∂u

∂n
= 0 on ∂Ω. (11)

Let 〈·, ·〉 denote the standard L2(Ω)–inner product and Ψd be a wavelet basis of
H2

0 (Ω). The variational formulation is Au = f , where A =
〈

∆Ψd,∆Ψd
〉

, u = uTΨd,
and f =

〈

f,Ψd
〉

. It is known that then condA ≤ C <∞. Since A is symmetric and
positive definite, we have also

condAs ≤ C, where As =
〈

∆Ψd
s ,∆Ψd

s

〉

(12)

and Ψd
s is a multiscale wavelet basis with s levels of wavelets. The condition numbers

of the stiffness matrices As are shown in Table 1. A construction by Jia and Zhao
from [8] is denoted as JZ11, a construction from [4] is denoted as CF12, a construction
of multiwavelet basis from [10] is denoted as S09 and a wavelet basis defined in
Section 2 is denoted as new.

s N JZ11 N CF12 N S09 N new
1D

1 15 45.9 17 61.2 30 472.0 7 3.5
5 255 45.9 257 66.6 510 640.8 127 4.1
9 4095 45.9 4097 66.7 8190 731.4 2047 4.1

2D
1 225 34.0 289 128.1 900 484.4 49 8.5
2 961 34.9 1089 141.3 3844 583.4 225 14.3
3 3969 35.1 4225 212.0 15876 626.9 961 17.5
4 16129 35.3 16641 257.6 64516 653.5 3969 18.2
5 65025 35.5 66049 281.2 260100 673.2 16129 18.4
6 261121 35.8 263169 297.2 1044484 689.4 65025 18.6

Table 1: The condition numbers of the stiffness matrices As of the size N × N
corresponding to multi-scale wavelet bases with s levels of wavelets.
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Figure 2: The convergence history for an adaptive wavelet scheme with various
wavelet bases.

4. Numerical example

We compare the quantitative behaviour of the adaptive wavelet method with
a basis constructed in this paper and a cubic spline-wavelet basis from [4]. In [4] the
comparison with other wavelet bases is already done. We consider the equation (11)
with a solution u given by

u (x, y) = v (x) v (y) , v (x) = x2
(

1− e12x−12
)2
. (13)

The solution exhibits a sharp gradient near the point [1, 1]. We solve the problem
by the method designed in [6] with the approximate multiplication of the stiffness
matrix with a vector proposed in [2]. The convergence history is shown in Figure 2.
In our experiments, the convergence rate, i.e. the slope of the curve, is similar for
both bases. However, they significantly differ in the number of basis functions and
number of iterations needed to resolve the problem with desired accuracy.

5. Conclusion

We have shown that a wavelet basis from [5] has a short support and the condi-
tion number of the corresponding stiffness matrix is smaller than for any other cubic
spline wavelet basis adapted to the second-order homogeneous Dirichlet boundary
conditions known from literature. It was shown in [8] that Galerkin wavelet method
with the wavelet basis from [8] has superb convergence. We have shown that our
basis has similar quantitative properties as basis constructed by Jia and Zhao and
additionally wavelets have some vanishing wavelet moments. Therefore, unlike basis
by Jia and Zhao our basis can be used in adaptive wavelet methods. We implemented
adaptive wavelet method with our basis and we have shown that its convergence is
improved. However, our basis does not have local duals, therefore in some applica-
tions bases from [4, 10] are more appropriate. Furthermore, it should be shown that
our basis is indeed a wavelet basis, i.e. that a Riesz basis property (2) is satisfied.
The proof and other details can be found in [5].
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[2] Černá, D. and Finěk, V.: Approximate multiplication in adaptive wavelet meth-
ods. Accepted for publication in Cent. Eur. J. Math., 2012.
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[5] Černá, D. and Finěk, V.: Cubic spline wavelets with short support for fourth-
order problems. In preparation.

[6] Cohen, A., Dahmen, W. and DeVore, R.: Adaptive wavelet methods II - beyond
the elliptic case. Found. Math. 2 (2002), 203–245.

[7] Han, B. and Shen, Z.: Wavelets with short support. SIAM J. Math. Anal. 38
(2006), 530–556.

[8] Jia, R.Q. and Zhao, W.: Riesz bases of wavelets and applications to numerical
solution of elliptic equations. Math. Comput. 80 (2011), 1525–1556.

[9] Primbs, M.: New stable biorthogonal spline-wavelets on the interval. Result.
Math. 57 (2010), 121–162.

[10] Schneider, A.: Biorthogonal cubic Hermite spline multiwavelets on the interval
with complementary boundary conditions. Result. Math. 53 (2009), 407–416.

20


