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FRAP technique

FRAP (Fluorescence Recovery After Photobleaching) technique allows
detection of diffusivity of autofluorescence compound like proteins (e.g.
phycobiliproteins) and also other non-fluorescence compound that are
fluorescently tagged (e.g. green fluorescence proteins - GFP).

This method is based on application of short, intense laser irradiation
(the so called bleach) to a small target region (Region Of Interest - ROI)
of the cell that causes irreversible loss in fluorescence in this area without
any damage in intracellular structures. After the ”bleach” (or
”bleaching”), the observed recovery in fluorescence in the ”bleached
area” reflects diffusion of fluorescence compounds from the area outside
the bleach.
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FRAP data: spatio-temporal image

Fluorescence intensity (in arbitrary units) vs. Distance [µm].
Experimental data from FRAP experiment with red algae Porphyridium

cruentum describing the phycobilisomes mobility on thylakoid membrane.
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Motivation and State-of-the art

Our study describes the development and validation of a reliable method
aiming to determine the phycobilisomes diffusivity on thylakoid membrane
using FRAP experiments. This was usually done by experimental curve
fitting to the analytical (closed form) models. For example, Moullineaux
et al. (1997) have exploited the rotational symmetry of the cells by
bleaching a plane across the short axis of the cell. Therefore,
one-dimensional bleaching profiles along the long axis were generated.

C. W. Moullineaux supposed that:

1 x ∈ R, i.e. the infinite domain

2 the initial bleaching profile is Gaussian: y(x , t0) = y0,0 exp
−2x2

r02
,

where r0 is the half-width of the bleach at time t0 = 0 and
y(x,t0)
y0,0

= 1/e2 depth, y0,0 is the maximum depth at time t0, i.e. the

first post-bleach signal at the center (x = 0) subtracted from its
pre-bleach level

3 boundary conditions correspond to the complete recovery: y → 0 as
t → ∞, y → 0 as x → ∞.



7

C. W. Moullineaux method

The calculation of the diffusion coefficient D according to Moullineaux et

al. resides in the weighted linear regression: a plot of (
y0,0

y(0,t) )
2 against

time, which should give a straight line with the tangent 8D
r02

.

y(x , t) =
y0,0r0√
r02 + 8Dt

exp
−2x2

r02 + 8Dt
, y(0, t) =

y0,0r0√
r02 + 8Dt

,

where y(x , t) is the post-bleach signal at time t subtracted from the
pre-bleach profile, y(0, t) is the maximum depth at time t.
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Diffusion-reaction equation

The recovery of unbleached particle concentration as a function of spatial
coordinate r and time t is modeled with a linear, diffusion-reaction
equation on a two-dimensional domain Ω:

∂C

∂t
−∇ · (D∇C ) = R(C ) (1)

C (r , t) is the unbleached particle concentration,

D is the fluorescent particle diffusivity within the domain Ω
(supposed to be a constant),

R(C ) is a reaction term.

Reaction term R(C ) can be described as a first order reaction:

R(C ) = −kS C (2)

kS is a rate constant describing bleaching during scanning.
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Initial and boundary conditions

The initial condition is

C0(r) = f (r , t0) in Ω.

The time varying boundary condition is

either of the Dirichlet type

C(r , t) = g(r , t) on ∂Ω× [t0,T ],

or of the Neumann type (based on the Fick’s first law)

−D∇C(r , t) · n(r) = h(r , t) on ∂Ω× [t0,T ],

where n(r) is the unit normal vector to ∂Ω inward Ω.
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Re-scaling to the dimensionless form

If we exploit the symmetry of our problem (according to Moullineaux et

al.), further adopt the form of reaction term according to (2) and
introduce

the dimensionless spatial coordinate x ∈ [0, 1],

the dimensionless diffusion coefficient p > 0,

the dimensionless time τ ≥ τ0,

the dimensionless normalized unbleached particle concentration y

by

x :=
r

L
, p :=

D

D0
, τ := t

D0

L2
, y :=

C

Cpre

, (3)

where

L is the length of our specimen in direction ⊥ to bleach spot,

D0 is a constant with some characteristic value (unit: m2s−1),

Cpre is a pre-bleach concentration of C ,

we finally obtain the following form of dimensionless diffusion-reaction
equation on one-dimensional domain, i.e. for x ∈ [0, 1].
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1D problem formulation

One-dimensional form of diffusion-reaction equation:

∂y

∂τ
− p

∂2y

∂x2
= −kSL

2

D0
y . (4)

The initial condition is

y(x , τ0) = f (x), x ∈ [0, 1]. (5)

The time varying boundary conditions are either of the Dirichlet type

y(0, τ) = g0(τ), y(1, τ) = g1(τ), τ ≥ τ0, (6)

or of the Neumann type

− p
∂y

∂x
(0, τ) = h0(τ), p

∂y

∂x
(1, τ) = h1(τ), τ ≥ τ0. (7)

For the sake of clarity we further neglect the bleaching during scanning,

i.e. we put kSL
2

D0
= 0 (the right-hand side in (4) is zero).
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Experimental data

Based on FRAP experiments, we have a 2D dataset in form of a table
with (N + 1) rows corresponding to the number of spatial points where
the values are measured, and (m +M + 1) columns with m pre-bleach
and M + 1 post-bleach experimental values forming 1D profiles

yexp(xi , τj), i = 0 . . .N , j = −m . . .M .

In fact the process is determined by

m columns of pre-bleach data containing the information about the
steady state and optical distortion

M +1 columns of post-bleach data containing the information about
the transport of unbleached particles (due to the diffusion) through
the boundary
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Re-scaling

Experimental values:

space interval between first and last measurement points: [a, b]

re-scaled dimensionless space interval: x ∈ [0, 1]

length of space interval: L = b − a

re-scaled distance between two space measurements: h = 1
N

time interval between two measurements: T

re-scaled dimensionless time interval: τt =
TD0

L2
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Re-scaled experimental data

Consequently,
x0 = 0, xN = 1,

τ0 corresponds to the first post-bleach measurement, and

yexp(xi , τ0), i = 0 . . .N , represents the IC,

yexp(0, τj), j = 0 . . .M , represents the left Dirichlet BC,

yexp(1, τj), j = 0 . . .M , represents the right Dirichlet BC,

the Neumann BC for each j th time instant is determined using the
Fick’s first law. This is possible thanks to the numerically computed
total flux h(τj) through the boundary. We suppose the symmetry,
hence the total flux is equally divided into the left border (x = 0)
and the right border (x = 1), see later for more details.

Recall that due to the measurement noise both the respective j − profiles

yexp(xi , τj), i = 0 . . .N , and the initial and boundary conditions cannot
be simply approximated by a smooth function. The forthcoming task is to
analyze the measurement noise from real data and to treat it correctly.
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Objective function

We construct an objective function J representing the disparity between
the experimental and simulated time-varying concentration profiles, and
then within a suitable method we look for such a value p minimizing J.

The usual form of an objective function is the sum of squared differences
between the experimentally measured and numerically simulated
time-varying concentration profiles:

J(p) =

M∑

j=0

N∑

i=0

[yexp(xi , τj )− ysim(xi , τj , p)]
2
, (8)

where ysim(xi , τj , p) are the simulated values resulting from the solution
of problem (4)–(6).
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Biological reality

Taking into account the biological reality residing in possible time
dependence of phycobilins diffusivity, for the minimization problem

min
p

J(p) = min
p

M∑

j=0

N∑

i=0

[yexp(xi , τj)− ysim(xi , τj , p)]
2

(9)

we further consider two cases:

1 We can take both sums for i and j in (9) together. In this case, the
scalar p is a result of minimization problem for J.

2 We can consider each j th time instant separately. In this case, the M

solutions p1 . . . pM correspond to each minimization problem for
fixed j in sum (9) and we can observe a ’dynamics’ of diffusion
coefficient pj evolution.
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Data P. Cruentum - 11-11 14: diffusion coefficients pj
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Test data: diffusion coefficients pj
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Abstract formulation

We assume model in form of

T (p) = f

and we want to find
p = T−1(f ) .

Operator T is not analytically invertible, therefore we want to find

p∗ = argmin
p

||T (p)− f ||2 .

In reality we have only approximation of T – T̃ and we don’t have the
exact data – f = fexact + fnoise and therefore we obtain

p̃∗ = argmin
p

||T̃ (p)− fexact + fnoise ||2 .

Minimum of the functional p̃∗ can be very far from exact p.
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Example - backward heat equation 1

Let consider for simplicity we solve the heat equation with homogenous
BC at (−∞,+∞)× (0,+∞)

∂y

∂τ
− p

∂2y

∂x2
= 0

with initial condition

y(x , τ0) = f (x), x ∈ (−∞,+∞) . (10)

Solution of this problem is

y(x , τ) = (T (f ) =)

∫ ∞

−∞

Kpτ (x − y)f (y)dy , (11)

where Kτ (x) =
1

4πτ exp(− x2

4τ ).
When we know the final state and searching IC, we solve the Fredholm
integral equation of first kind. Operator T is compact, linear and its
spectrum is discrete with cumulative point at 0.
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Example - backward heat equation 2

Compact linear operators can be written in the form of singular value
expansion

T (x) =

+∞∑

i=1

σi 〈x , vi 〉ui , (12)

where ui (vi ) are a complete orthonormal system of eigenvectors of TT ∗

(T ∗T ).
For some y we can find pseudoinverse T † of form

T †(y) =

+∞∑

i=1

〈y , ui 〉
σi

vi , (13)

which satisfies T † = (T |N(T )⊥)
−1.

Operator T † is unbounded. Noise in y can completely overlay the correct
information.
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Example - differentiation

Let f ∈ C 1[0, 1] be any function, δ ∈ (0, 1), n ∈ N (n ≥ 2) be arbitrary
and define

f δn (x) := f (x) + δ sin
nx

δ
, x ∈ [0, 1] . (14)

Then
(f δn )

′(x) := f ′(x) + n cos
nx

δ
, x ∈ [0, 1] . (15)

Now, in the uniform norm,

||f − (f δn )||∞ = δ , (16)

but
||f ′ − (f δn )

′||∞ = n . (17)

We can see, that the derivative does not depend continuously on the
data with respect to the uniform norm.
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A priori information, regularization

From similar reasons our parameter identification problem

p̃∗ = argmin
p

||T̃ (p)− fexact + fnoise ||2

may not depend continuously on the data and may be very sensitive to
noise fnoise .
Therefore we regularize the problem by adding the regularization term

α||p − preg ||2 .

We assume that p(x , τ) is almost constant with respect to x and τ and
regularization term moves the minimum of functional p̃∗ towards a
constant function. In case α → ∞ we obtain p̃∗ = preg .
We minimize new functional with respect to p and preg

p̃∗ = arg min
p,preg

(||T̃ (p)− fexact + fnoise ||2 + α||p − preg ||2) .
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Appropriate approach

Our problem is ill-posed in the sense that the solution, i.e. the diffusion
coefficients

Dj = pj D0, j = 1 . . .M

do not depend continuously on the initial experimental data. This led us
to the necessity of using some stabilizing procedure:

Naive approach: To remove the noise in experimental values,
consider their smoothing by using the Fourier transformation.

Appropriate approach: Formulation of regularized cost functions:

Jj(p, α) =
N∑

i=0

[yexp(xi , τj)− ysim(xi , τj , p)]
2+α (p − preg )

2 (18)

for j = 1 . . .M , where α ≥ 0 is a regularization parameter, and preg
is an expected value.

Taking α = 0, function J(p) =

M∑

j=0

Jj(p, 0) turns to (8).
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Optimization problem

Minimizing J with respect to p > 0 represents a one-dimensional
optimization problem (OP). Three types of OP are considered:

1 Scalar p is a solution when taking both sums for i and j in together:

p∗ = argmin
p

M∑

j=0

N∑

i=0

[yexp(xi , τj)− ysim(xi , τj , p)]
2

2 Each j th time instant separately without regularization (α = 0)

pj = argmin
p

N∑

i=0

[yexp(xi , τj)− ysim(xi , τj , p)]
2

3 Each j th time instant separately using Tikhonov regularization

pj(α) = argmin
p

{
N∑

i=0

[yexp(xi , τj)− ysim(xi , τj , p)]
2
+ α (p − preg )

2

}

We use a basic optimization method leading to values p∗, pj , pj(α) that
minimize J. Values pj , pj(α) are approximations of diffusion coefficients.
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Basic optimization method

Basic optimization method is an iteration process starting from an initial
point p(0) and generating a sequence of iterates p(1), p(2), . . . leading to a
value p∗ such that

p(l+1) = p(l) + σ(l)d (l),

where

d (l) is a direction vector – is determined on the basis of values

p(j), J(p(j)), J ′(p(j)), J ′′(p(j)), 0 ≤ j ≤ l ,

σ(l) > 0 is a step-length – is determined on the basis of behavior of
the function J in the neighborhood of p(l).

We use a suitable optimization method from the so-called UFO system

http://www.cs.cas.cz/luksan/ufo.html



31

Problem to be solved

In order to compute a function value Jj(p
(l), α) in (18) for a given p(l) in

the l th iteration, we need to know both

the experimental values yexp(xi , τj ), i = 0 . . .N , j = 0 . . .M ,

the simulated values ysim(xi , τj , p
(l)), i = 0 . . .N , j = 0 . . .M .

It means that in each l th iteration we need to solve the problem (let put
ysim ≡ y , p(l) ≡ p for simplicity)

∂y

∂τ
− p

∂2y

∂x2
= 0 (19)

with the initial and boundary conditions defined by the experimental data:

y(x , τ0) = yexp(x , τ0), x ∈ [0, 1] (20)

(D) y(0, τ) = yexp(0, τ), y(1, τ) = yexp(1, τ), τ ≥ τ0 (21)

(N) −py ′(0, τ) =
Flux(τ)

2
, py ′(1, τ) =

Flux(τ)

2
, τ ≥ τ0 (22)
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Simulated data

Problem (19)-(22) for simulated data y(xi , τj) was solved numerically
using the finite difference scheme for uniformly distributed nodes with the
space steplength ∆h and the variable time steplength ∆τ :

1 The explicit scheme of order ∆τ +∆h2:

yi ,j = βyi−1,j−1 + (1− 2β)yi ,j−1 + βyi+1,j−1

2 The Crank-Nicholson implicit scheme of order ∆τ2 +∆h2:

−β

2
yi−1,j+(1+β)yi ,j−

β

2
yi+1,j =

β

2
yi−1,j−1+(1−β)yi ,j−1+

β

2
yi+1,j−1

Here β = ∆τ
∆h2

p and yi ,j ≡ y(xi , τj) are the computed values in nodes
that enter the function J as values ysim(xi , τj).

Recall that for the explicit scheme the condition β ≤ 1/2 must hold.
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Space and time steplengths

Steplengths used in the numerical scheme:

Space steplength: ∆h = 1/N or ∆h = 1/(κsN), κs ∈ N

Time steplength: ∆τ should be ideally of the same order as ∆h2

(or ∆h in the CN scheme) and in the explicit scheme has to fulfill

the relation ∆τ ≤ ∆h2

2p .

In order to get from the (j − 1)th time instant to the j th, we need to
perform

κt =
TD0

L2∆τ

substeps, where κt ∈ N has to be an integer depending on ∆τ .
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Differential scheme
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Neumann boundary conditions

When considering the Neumann BC, we use the following formulas:

−Flux(j)

2p
= y ′(0, τj) = y ′(x0, τj) ≈

1

yexp(x1, τj)− yexp(x−1, τj)

2∆h

2

−yexp(x2, .) + 8yexp(x1, .)− 8yexp(x−1, .) + yexp(x−2, .)

12∆h

3

−3yexp(x4) + 16yexp(x3)− 36yexp(x2) + 48yexp(x1)− 25yexp(x0)

12∆h

and similarly on the other side:

Flux(j)

2p
= y ′(1, τj) = y ′(xN , τj) ≈ . . .

The errors are: ∆h2

6 y (3), ∆h4

30 y (5), ∆h4

5 y (5).
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Computing the flow or flux through the border ∂Ω

To compute the diffusive flux J(r , t), we use the Fick’s first law

−D∇C (r , t) = J(r , t) on ∂Ω× [t0,T ].

Further, we use the term Flux(j) for the total flux through the border,
based on mass balance we have

Flux(j) =
∂

∂t

∫

Ω

C (r , t)dV .

In our 1D case, we compute for each j th time instant

ysum(j) = sstep

[
yexp(x0, τj) + yexp(xN , τj )

2
+

N−1∑

i=1

yexp(xi , τj)

]

and set

Flux(j) =
LC{ysum(j − 2), ysum(j − 1), ysum(j + 1), ysum(j + 2)}

tstep

where LC means ’a linear combination of’ and

sstep is a space step between two experimental data

tstep is a time step between two experimental data
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Tikhonov regularization

Values pj and pj(α) are approximate solutions of minimization problems

pj = argmin
p

Jj(p), pj(α) = argmin
p

Jj(p, α)

It holds
lim
α→0

pj(α) = pj

What we have for α → ∞:

:-) solutions pj(α) are more and more constant i.e. pj(α) ≡ preg ∀j
:-( function values Jj(pj(α), α) becomes larger (although there is a

supremum).

We look for such a value α∗ for which the relative standard deviation is
’small enough’.
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L-curve criterion

Criterion called the L-curve:
We plot

the value of objective function J (without the regularization term)

against

the average value øpj(α) and the deviation of pj(α) from øpj(α)
(or construct a combination when we know the exact solution p∗)

The L-curve optimal parameter α∗ then corresponds to the point with
maximal curvature.
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L-curve quantities

For the plotting we use the following quantities:

1 Objective function J

J(p1(α) . . . pM(α)) =

M∑

j=0

N∑

i=0

[yexp(xi , τj)− ysim(xi , τj , pj(α))]
2

2

”
Relative“ deviation from the average value

(so-called coefficient of variation)

σ =
1

Møpj(α)

√√√√
M∑

j=1

[pj(α)− øpj(α)]2

3 Relative deviation from the solution

ω =
|øpj(α)− p∗|+ σ

p∗
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The algorithm

For a fixed regularization parameter α we determine diffusion coefficients
p1(α) . . . pM(α) in the following way:

1 Choose initial expected value preg and stopping tolerance εreg
2 Compute pj(α), j = 1 . . .M , by minimizing functions

Jj(p, α) =

{
N∑

i=0

[yexp(xi , τj )− ysim(xi , τj , p)]
2
+ α (p − preg )

2

}

3 Compute the average value

øpj(α) =
p1(α) + · · ·+ pM(α)

M

4 If
|øpj(α)− preg | ≤ εreg ,

then STOP.

5 Set preg = øpj(α) and go back to step 2.
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Test data

Dirichlet boundary condition, noise = 1%, 5%, 10%, 20%:
j th time instant against values pj for different α
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Test data

Neumann boundary condition, noise = 1%, 5%, 10%, 20%:
j th time instant against values pj for different α
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Test data

Dirichlet boundary condition, noise = 1%, 5%, 10%, 20%:
L-curve – values J against values ω
α = 0, 1d-4, 1d-3, 1d-2, 1d-1, 5d-1, 1, 5, 10, 50, 100, 500
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Test data

Neumann boundary condition, noise = 1%, 5%, 10%, 20%:
L-curve – values J against values ω
α = 0, 1d-4, 1d-3, 1d-2, 1d-1, 5d-1, 1, 5, 10, 50, 100, 500
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Test data

Values pj for Dirichlet (UL) and Neumann (UR) boundary conditions;
values of deviation for Dirichlet (BL) and Neumann (BR) b.c.
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Conclusion

Our method improves on other models by accounting for
experimentally measured post-bleaching fluorescence profiles (i.e.
not only the maximum depth point as CWM does) and
time-dependent boundary conditions, and can include also a reaction
term to account for the low level bleaching during scanning and the
time varying fluorescence signal as well.

Finding an optimal solution p is not a simple least square
minimization problem. Due to the ill-posedness and noisy data it is
quite a difficult task. We have already implemented a suitable
regularization technique and a robust optimization procedure. In the
near future we would like to improve our method by an adequate
assessment of the measurement noise.

For the previously known diffusion coefficient and the synthetic data
simulated by the random walk model our program computes correct
results. We determined the diffusivities for the real data of FRAP
measurements (with the red algae Porphyridium cruentum). The
range of result 10−14m2s−1 is in agreement with reference values.
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Papáček Š., Kaňa R., Matonoha C.:
Estimation of diffusivity of phycobilisomes on thylakoid membrane based on

spatio-temporal FRAP images.

Proceedings of seminar
”
SNA’12“, Liberec 2012, p. 146-148


	Introduction
	1D diffusion-reaction equation
	Single parameter estimation problem
	Ill-posed problem
	Implementation
	Regularization
	Numerical results

